Disturbance-tailored super-twisting algorithms: Properties and design framework

被引:15
作者
Haimovich, Hernan [1 ]
De Battista, Hernan [2 ]
机构
[1] UNR, CONICET, Ctr Int Francoargentino Ciencias Informac & Siste, RA-2000 Rosario, Santa Fe, Argentina
[2] Consejo Nacl Invest Cient & Tecn, UNLP, Inst LEICI, GCA, La Plata, Buenos Aires, Argentina
关键词
Sliding modes; Super-twisting algorithm; Stability; Finite-time convergence; Disturbance rejection; STRICT LYAPUNOV FUNCTIONS; FINITE-TIME; ORDER; STABILIZATION; STABILITY; SYSTEMS;
D O I
10.1016/j.automatica.2018.12.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Second- and higher-order sliding mode techniques are able to avoid the chattering effect associated with first-order sliding. The super-twisting algorithm is one of the most popular second-order sliding mode techniques. Existing modifications of the super-twisting algorithm allow for improved disturbance rejection capability. In this paper, we introduce a new class of generalizations of the super-twisting algorithm that are able to keep the main advantages of standard super-twisting while rejecting disturbances bounded in forms for which the existing algorithms may be not directly applicable. Our results thus broaden the applicability of second-order sliding-mode techniques. We give conditions for stability and finite-time convergence, and provide a complete design framework based on given disturbance bounds. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:318 / 329
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 2011, Lecture Notes in Control and Information Sciences
[2]   Super-Twisting Algorithm in presence of time and state dependent perturbations [J].
Castillo, I ;
Fridman, L. ;
Moreno, J. A. .
INTERNATIONAL JOURNAL OF CONTROL, 2018, 91 (11) :2535-2548
[3]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114
[4]   Homogeneous High Order Sliding Mode design: A Lyapunov approach [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. .
AUTOMATICA, 2017, 80 :232-238
[5]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[6]  
Emel'yanov S. V., 1996, Computational Mathematics and Modeling, V7, P294, DOI 10.1007/BF01128162
[7]  
Filippov Aleksei Fedorovich, 1988, Differential Equations with Discontinuous Righthand Sides
[8]  
Haimovich H., 2017, 17 REUN TRAB PROC IN
[9]   On the sliding-mode control of fractional-order nonlinear uncertain dynamics [J].
Jakovljevic, B. ;
Pisano, A. ;
Rapaic, M. R. ;
Usai, E. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (04) :782-798
[10]   Homogeneity approach to high-order sliding mode design [J].
Levant, A .
AUTOMATICA, 2005, 41 (05) :823-830