In Situ Atomic Force Microscopy of the Reconfiguration of On-Surface Self-Assembled DNA-Nanoparticle Superlattices

被引:11
作者
Shekhirev, Mikhail [1 ]
Sutter, Eli [2 ]
Sutter, Peter [1 ]
机构
[1] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
DNA; in situ microscopy; nanoparticles; self-assembly; smart materials; EQUIVALENTS;
D O I
10.1002/adfm.201806924
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to dynamically reconfigure superlattices in response to external stimuli is an intriguing prospect for programmable DNA-guided nanoparticle (NP) assemblies, which promises the realization of "smart" materials with dynamically adjustable interparticle spacing and real-time tunable properties. Existing in situ probes of reconfiguration processes have been limited mostly to reciprocal space methods, which can follow larger ordered ensembles but do not provide access to real-space pathways and dynamics. Here, in situ atomic force microscopy is used to investigate DNA-linked NP assemblies and their response to external stimuli, specifically the contraction and expansion of on-surface self-assembled monolayer superlattices upon reversible DNA condensation induced by ethanol. In situ microscopy allows observation and quantification of key processes in solution, e.g., lattice parameter changes, defects, and monomer displacements in small groups of NPs. The analysis of imaging data uncovers important boundary conditions due to DNA bonding of NP superlattices to a substrate. Tension in the NP-substrate DNA bonds, which can elastically extend, break, and re-form during contraction/expansion cycles, counteracts the changes in lattice parameter and causes hysteresis in the response of the system. The results provide insight into the behavior of supported DNA-linked NP superlattices and establish a foundation for designing and probing tunable nanocrystal-based materials in solution.
引用
收藏
页数:8
相关论文
共 53 条
  • [1] Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy
    Bald, Ilko
    Keller, Adrian
    [J]. MOLECULES, 2014, 19 (09) : 13803 - 13823
  • [2] Colloidal interactions and self-assembly using DNA hybridization
    Biancaniello, PL
    Kim, AJ
    Crocker, JC
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (05)
  • [3] DesYoreo J., 2013, ADV FUNCT MATER, V23, P2525
  • [4] Lattice Mismatch in Crystalline Nanoparticle Thin Films
    Gabrys, Paul A.
    Seo, Soyoun E.
    Wang, Mary X.
    Oh, EunBi
    Macfarlane, Robert J.
    Mirkin, Chad A.
    [J]. NANO LETTERS, 2018, 18 (01) : 579 - 585
  • [5] Controlling the lattice parameters of gold nanoparticle FCC crystals with duplex DNA linkers
    Hill, Haley D.
    Macfarlane, Robert J.
    Senesi, Andrew J.
    Lee, Byeongdu
    Park, Sung Yong
    Mirkin, Chad A.
    [J]. NANO LETTERS, 2008, 8 (08) : 2341 - 2344
  • [6] The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange
    Hill, Haley D.
    Mirkin, Chad A.
    [J]. NATURE PROTOCOLS, 2006, 1 (01) : 324 - 336
  • [7] Maximizing DNA loading on a range of gold nanoparticle sizes
    Hurst, Sarah J.
    Lytton-Jean, Abigail K. R.
    Mirkin, Chad A.
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (24) : 8313 - 8318
  • [8] Visualization of Multimerization and Self-Assembly of DNA-Functionalized Gold Nanoparticles Using In-Liquid Transmission Electron Microscopy
    Keskin, Sercan
    Besztejan, Stephanie
    Kassier, Guenther
    Manz, Stephanie
    Buecker, Robert
    Riekeberg, Svenja
    Trieu, Hoc Khiem
    Rentmeister, Andrea
    Miller, R. J. Dwayne
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22): : 4487 - 4492
  • [9] Engineering DNA-mediated colloidal crystallization
    Kim, AJ
    Biancaniello, PL
    Crocker, JC
    [J]. LANGMUIR, 2006, 22 (05) : 1991 - 2001
  • [10] Transmutable nanoparticles with reconfigurable surface ligands
    Kim, Youngeun
    Macfarlane, Robert J.
    Jones, Matthew R.
    Mirkin, Chad A.
    [J]. SCIENCE, 2016, 351 (6273) : 579 - 582