Coordination of mitochondrial biogenesis by PGC-1α in human skeletal muscle: A re-evaluation

被引:76
作者
Islam, Hashim [1 ]
Edgett, Brittany A. [1 ,2 ]
Gurd, Brendon J. [1 ]
机构
[1] Queens Univ, Sch Kinesiol & Hlth Studies, Kingston, ON K7L 3N6, Canada
[2] Univ Guelph, Human Hlth & Nutr Sci, Guelph, ON N1G 2W1, Canada
来源
METABOLISM-CLINICAL AND EXPERIMENTAL | 2018年 / 79卷
关键词
Skeletal muscle physiology; Mitochondrial gene regulation; Exercise metabolism; PGC-1; alpha; TFAM; MESSENGER-RNA EXPRESSION; TRANSCRIPTIONAL COACTIVATOR PGC-1-ALPHA; NUCLEAR RESPIRATORY FACTORS; HIGH-INTENSITY INTERVAL; AEROBIC EXERCISE; GENE-EXPRESSION; CONTRACTILE ACTIVITY; P53; PHOSPHORYLATION; SPRINT-INTERVAL; INCREASES;
D O I
10.1016/j.metabol.2017.11.001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator-1 alpha (PGC-1 alpha) is proposed to coordinate skeletal muscle mitochondrial biogenesis through the integrated induction of nuclear- and mitochondrial-encoded gene transcription. This paradigm is based largely on experiments demonstrating PGC-1 alpha's ability to co-activate various nuclear transcription factors that increase the expression of mitochondrial genes, as well as PGC-1 alpha's direct interaction with mitochondrial transcription factor A within mitochondria to increase the transcription of mitochondrial DNA. While this paradigm is supported by evidence from cellular and transgenic animal models, as well as acute exercise studies involving animals, the up regulation of nuclear- and mitochondrial-encoded genes in response to exercise does not appear to occur in a coordinated fashion in human skeletal muscle. This review re-evaluates our current understanding of this phenomenon by highlighting evidence from recent studies examining the exercise-induced expression of nuclear- and mitochondrial-encoded genes targeted by PGC-1 alpha. We also highlight several possible theories that may explain the apparent inability of PGC-1 alpha to coordinately up-regulate the expression of genes required for mitochondrial biogenesis in human skeletal muscle, and provide directions for future work exploring mitochondrial biogenic gene expression following exercise. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 88 条
[1]   Peroxisome Proliferator-activated Receptor γ Co-activator 1α (PGC-1α) and Sirtuin 1 (SIRT1) Reside in Mitochondria POSSIBLE DIRECT FUNCTION IN MITOCHONDRIAL BIOGENESIS [J].
Aquilano, Katia ;
Vigilanza, Paola ;
Baldelli, Sara ;
Pagliei, Beatrice ;
Rotilio, Giuseppe ;
Ciriolo, Maria Rosa .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (28) :21590-21599
[2]   Adult expression of PGC-1α and-1β in skeletal muscle is not required for endurance exercise-induced enhancement of exercise capacity [J].
Ballmann, Christopher ;
Tang, Yawen ;
Bush, Zachary ;
Rowe, Glenn C. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2016, 311 (06) :E928-E938
[3]   Acute Exercise Remodels Promoter Methylation in Human Skeletal Muscle [J].
Barres, Romain ;
Yan, Jie ;
Egan, Brendan ;
Treebak, Jonas Thue ;
Rasmussen, Morten ;
Fritz, Tomas ;
Caidahl, Kenneth ;
Krook, Anna ;
O'Gorman, Donal J. ;
Zierath, Juleen R. .
CELL METABOLISM, 2012, 15 (03) :405-411
[4]   Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis [J].
Bartlett, Jonathan D. ;
Louhelainen, Jari ;
Iqbal, Zafar ;
Cochran, Andrew J. ;
Gibala, Martin J. ;
Gregson, Warren ;
Close, Graeme L. ;
Drust, Barry ;
Morton, James P. .
AMERICAN JOURNAL OF PHYSIOLOGY-REGULATORY INTEGRATIVE AND COMPARATIVE PHYSIOLOGY, 2013, 304 (06) :R450-R458
[5]   Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle [J].
Bartlett, Jonathan D. ;
Joo, Chang Hwa ;
Jeong, Tae-Seok ;
Louhelainen, Jari ;
Cochran, Andrew J. ;
Gibala, Martin J. ;
Gregson, Warren ;
Close, Graeme L. ;
Drust, Barry ;
Morton, James P. .
JOURNAL OF APPLIED PHYSIOLOGY, 2012, 112 (07) :1135-1143
[6]   Acute upregulation of PGC-1α mRNA correlates with training-induced increases in SDH activity in human skeletal muscle [J].
Bonafiglia, Jacob T. ;
Edgett, Brittany A. ;
Baechler, Brittany L. ;
Nelms, Matthew W. ;
Simpson, Craig A. ;
Quadrilatero, Joe ;
Gurd, Brendon J. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2017, 42 (06) :656-666
[7]  
Brandt N, 2016, PHYSL REP, V4
[8]   Muscle-specific expression of PPARγ coactivator-1α improves exercise performance and increases peak oxygen uptake [J].
Calvo, Jennifer A. ;
Daniels, Thomas G. ;
Wang, Xiaomei ;
Paul, Angelika ;
Lin, Jiandie ;
Spiegelman, Bruce M. ;
Stevenson, Susan C. ;
Rangwala, Shamina M. .
JOURNAL OF APPLIED PHYSIOLOGY, 2008, 104 (05) :1304-1312
[9]   Systematic identification of human mitochondrial disease genes through integrative genomics [J].
Calvo, S ;
Jain, M ;
Xie, XH ;
Sheth, SA ;
Chang, B ;
Goldberger, OA ;
Spinazzola, A ;
Zeviani, M ;
Carr, SA ;
Mootha, VK .
NATURE GENETICS, 2006, 38 (05) :576-582
[10]   Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise [J].
Cartoni, R ;
Léger, B ;
Hock, MB ;
Praz, M ;
Crettenand, A ;
Pich, S ;
Ziltener, JL ;
Luthi, F ;
Dériaz, O ;
Zorzano, A ;
Gobelet, C ;
Kralli, A ;
Russell, AP .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 567 (01) :349-358