Fractional conservation laws in optimal control theory

被引:215
作者
Frederico, Gastao S. F. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, P-3810193 Aveiro, Portugal
[2] Univ Cape Verde, Dept Sci & Technol, Praia, Santiago, Cape Verde
基金
英国科研创新办公室;
关键词
fractional derivatives; optimal control; Noether's theorem; conservation laws; symmetry;
D O I
10.1007/s11071-007-9309-z
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Using the recent formulation of Noether's theorem for the problems of the calculus of variations with fractional derivatives, the Lagrange multiplier technique, and the fractional Euler-Lagrange equations, we prove a Noether-like theorem to the more general context of the fractional optimal control. As a corollary, it follows that in the fractional case the autonomous Hamiltonian does not define anymore a conservation law. Instead, it is proved that the fractional conservation law adds to the Hamiltonian a new term which depends on the fractional-order of differentiation, the generalized momentum and the fractional derivative of the state variable.
引用
收藏
页码:215 / 222
页数:8
相关论文
共 30 条
[1]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[2]   Special Issue: Fractional Derivatives and their Applications - Introduction [J].
Agrawal, OP ;
Machado, JAT ;
Sabatier, J .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :1-2
[3]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[4]  
[Anonymous], 2004, PORT MATH NS
[5]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[6]   Fractional Hamiltonian analysis of higher order derivatives systems [J].
Baleanu, Dumitru ;
Muslih, Sami I. ;
Tas, Kenan .
JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (10)
[7]   Fractional Hamilton formalism within Caputo's derivative [J].
Baleanu, Dumitru ;
Agrawal, Om. P. .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) :1087-1092
[8]  
Dzenite IA, 2006, INT J APPL MATH STAT, V4, P88
[9]   Necessary optimality conditions for fractional action-like integrals of variational calculus with Riemann-Liouville derivatives of order (α, β) [J].
El-Nabulsi, Rami Ahmad ;
Torres, Delfim F. M. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (15) :1931-1939
[10]  
ELNABULSI RA, 2005, FIZIKA A, V14, P289