The matcher game played in graphs

被引:4
作者
Goddard, Wayne [1 ,2 ,3 ]
Henning, Michael A. [3 ]
机构
[1] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[2] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[3] Univ Johannesburg, Dept Pure & Appl Math, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Matcher game; Matching; DOMINATION GAME; HYPERGRAPHS; NUMBER;
D O I
10.1016/j.dam.2017.11.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a game played on a graph by two players, named Maximizer and Minimizer. Each round two new vertices are chosen; first Maximizer chooses a vertex u that has at least one unchosen neighbor and then Minimizer chooses a neighbor of u. This process eventually produces a maximal matching of the graph. Maximizer tries to maximize the number of edges chosen, while Minimizer tries to minimize it. The matcher number alpha'(g)(G) of a graph G is the number of edges chosen when both players play optimally. In this paper it is proved that alpha'(g)(G) >= 2/3 alpha'(G), where alpha'(G) denotes the matching number of graph G, and this bound is tight. Further, if G is bipartite, then alpha'(g)(G) = alpha'(G). We also provide some results on graphs of large odd girth and on dense graphs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 13 条
  • [1] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [2] Bodlaender H. L., 1991, International Journal of Foundations of Computer Science, V2, P133, DOI 10.1142/S0129054191000091
  • [3] Borowiecki M, 2007, ELECTRON J COMB, V14
  • [4] DOMINATION GAME AND AN IMAGINATION STRATEGY
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (03) : 979 - 991
  • [5] Bounds on the game transversal number in hypergraphs
    Bujtas, Csilla
    Henning, Michael A.
    Tuza, Zsolt
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2017, 59 : 34 - 50
  • [6] TRANSVERSAL GAME ON HYPERGRAPHS AND THE 3/4-CONJECTURE ON THE TOTAL DOMINATION GAME
    Bujtas, Csilla
    Henning, Michael A.
    Tuza, Zsolt
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2016, 30 (03) : 1830 - 1847
  • [7] Game matching number of graphs
    Cranston, Daniel W.
    Kinnersley, William B.
    Suil, O.
    West, Douglas B.
    [J]. DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 1828 - 1836
  • [8] THE LAFFER CURVE AND OTHER LAUGHS IN CURRENT ECONOMICS
    GARDNER, M
    [J]. SCIENTIFIC AMERICAN, 1981, 245 (06) : 18 - &
  • [9] Henning M. A., 2013, Total Domination in Graphs
  • [10] The 4/5 upper bound on the game total domination number
    Henning, Michael A.
    Klavzar, Sandi
    Rall, Douglas F.
    [J]. COMBINATORICA, 2017, 37 (02) : 223 - 251