Embedded multiple shooting methodology in a genetic algorithm framework for parameter estimation and state identification of complex systems

被引:4
|
作者
Sarode, Ketan Dinkar [1 ,2 ,3 ]
Kumar, V. Ravi [1 ,2 ,3 ]
Kulkarni, B. D. [1 ,2 ,3 ]
机构
[1] CSIR NCL, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
[2] CSIR NCL, CoESC, Pune 411008, Maharashtra, India
[3] Acad Sci & Innovat Res AcSIR, Pune, Maharashtra, India
关键词
Parameter estimation; Multiple shooting; Genetic algorithm; Canonical models; Chaotic dynamics; Noise reduction; ORDINARY DIFFERENTIAL-EQUATIONS; GLOBAL OPTIMIZATION; SPATIOTEMPORAL CHAOS; BIOCHEMICAL PATHWAYS; DYNAMIC OPTIMIZATION; SCATTER SEARCH; S-SYSTEMS; MODELS; SYNCHRONIZATION; EFFICIENT;
D O I
10.1016/j.ces.2015.05.040
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel parameter estimation and state identification algorithm for nonlinear dynamical systems from data by embedding a multiple shooting methodology in the framework of a genetic algorithm (EMSGA) is described. The advantages of EMSGA are brought out by studies with two highly nonlinear examples, viz., the chaotic dynamics of a non-isothermal CSTR and the glycolysis regulation in Lactococcus lactis for production of lactic acid. For the chaotic dynamics with extremely high sensitivity to parameter values and initial conditions, EMSGA accurately estimates all process parameters while at the same time recovering the true dynamics of monitored and unmonitored variables from limited extents of noisy dynamic data. The superiority in accuracy and computational time of EMSGA over standalone genetic or multiple shooting algorithms for parameter estimation is shown for comparison purposes. In fact, EMSGA adapts well to the use of generalized canonical models, e.g., the S-system, where use of the fundamental Taylor series method of any order for integration becomes possible. This makes EMSGA highly efficient and exemplified here by estimating all the parameters of the derived higher dimensional 5-system model for the CSTR. Comparative studies with a well-known global-local enhanced scatter search method corroborate the suitability and advantages of the EMSGA methodology. For the glycolysis regulation example the numerical robustness of EMSGA is brought out by estimating a large number of model parameters when a majority of them are raised to the power of the state variables. Interestingly, we show that from noisy in vivo dynamic data it becomes possible to completely recover the noise-free dynamical behavior of unmonitored species concentrations using EMSGA. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 37 条
  • [21] State of health estimation of lead acid battery bank in a renewable energy system by parameter identification with genetic algorithms
    Banguero, E.
    Correcher, A.
    Perez-Navarro, A.
    Garcia, E.
    2018 7TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC), 2018, : 418 - 423
  • [22] Comments on "Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems"
    Aslam, Muhammad Saeed
    SIGNAL PROCESSING, 2015, 117 : 279 - 280
  • [23] Experimental Validation of Optimal Parameter and Uncertainty Estimation for Structural Systems Using a Shuffled Complex Evolution Metropolis Algorithm
    Tang, Hesheng
    Guo, Xueyuan
    Xie, Liyu
    Xue, Songtao
    APPLIED SCIENCES-BASEL, 2019, 9 (22):
  • [24] Robust maximum-likelihood parameter estimation of stochastic state-space systems based on EM algorithm
    Zhong Lusheng
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2007, 17 (09) : 1095 - 1103
  • [25] Robust maximum-likelihood parameter estimation of stochastic state-space systems based on EM algorithm
    Zhong Lusheng(National Laboratory of Industrial Control Technology
    ProgressinNaturalScience, 2007, (09) : 1095 - 1103
  • [26] Multiple-crack identification in a channel section steel beam using a combined response surface methodology and genetic algorithm
    Dey, Palash
    Talukdar, S.
    Bordoloi, D. J.
    STRUCTURAL CONTROL & HEALTH MONITORING, 2016, 23 (06) : 938 - 959
  • [27] State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle
    Zhang, Xiao
    Ding, Feng
    Xu, Ling
    Yang, Erfu
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (12) : 1704 - 1713
  • [28] Moving data window gradient-based iterative algorithm of combined parameter and state estimation for bilinear systems
    Liu, Siyu
    Ding, Feng
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (06) : 2413 - 2429
  • [29] Parameter and state estimation algorithm for single-input single-output linear systems using the canonical state space models
    Zhuang, Linfan
    Pan, Feng
    Ding, Feng
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (08) : 3454 - 3463
  • [30] Kalman Filter Tuning Using Multi-Objective Genetic Algorithm for State and Parameter Estimation of Lithium-Ion Cells
    Theiler, Michael
    Schneider, Dominik
    Endisch, Christian
    BATTERIES-BASEL, 2022, 8 (09):