Embedded multiple shooting methodology in a genetic algorithm framework for parameter estimation and state identification of complex systems

被引:4
|
作者
Sarode, Ketan Dinkar [1 ,2 ,3 ]
Kumar, V. Ravi [1 ,2 ,3 ]
Kulkarni, B. D. [1 ,2 ,3 ]
机构
[1] CSIR NCL, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
[2] CSIR NCL, CoESC, Pune 411008, Maharashtra, India
[3] Acad Sci & Innovat Res AcSIR, Pune, Maharashtra, India
关键词
Parameter estimation; Multiple shooting; Genetic algorithm; Canonical models; Chaotic dynamics; Noise reduction; ORDINARY DIFFERENTIAL-EQUATIONS; GLOBAL OPTIMIZATION; SPATIOTEMPORAL CHAOS; BIOCHEMICAL PATHWAYS; DYNAMIC OPTIMIZATION; SCATTER SEARCH; S-SYSTEMS; MODELS; SYNCHRONIZATION; EFFICIENT;
D O I
10.1016/j.ces.2015.05.040
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel parameter estimation and state identification algorithm for nonlinear dynamical systems from data by embedding a multiple shooting methodology in the framework of a genetic algorithm (EMSGA) is described. The advantages of EMSGA are brought out by studies with two highly nonlinear examples, viz., the chaotic dynamics of a non-isothermal CSTR and the glycolysis regulation in Lactococcus lactis for production of lactic acid. For the chaotic dynamics with extremely high sensitivity to parameter values and initial conditions, EMSGA accurately estimates all process parameters while at the same time recovering the true dynamics of monitored and unmonitored variables from limited extents of noisy dynamic data. The superiority in accuracy and computational time of EMSGA over standalone genetic or multiple shooting algorithms for parameter estimation is shown for comparison purposes. In fact, EMSGA adapts well to the use of generalized canonical models, e.g., the S-system, where use of the fundamental Taylor series method of any order for integration becomes possible. This makes EMSGA highly efficient and exemplified here by estimating all the parameters of the derived higher dimensional 5-system model for the CSTR. Comparative studies with a well-known global-local enhanced scatter search method corroborate the suitability and advantages of the EMSGA methodology. For the glycolysis regulation example the numerical robustness of EMSGA is brought out by estimating a large number of model parameters when a majority of them are raised to the power of the state variables. Interestingly, we show that from noisy in vivo dynamic data it becomes possible to completely recover the noise-free dynamical behavior of unmonitored species concentrations using EMSGA. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 37 条
  • [11] A Multi-State Optimization Framework for Parameter Estimation in Biological Systems
    Gu, Xu
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (03) : 472 - 482
  • [12] Parameter Estimation in Complex Plankton Models using the Boundary Eigenvalue Nudging - Genetic Algorithm (BENGA) Method
    Cropp, R. A.
    Bates, M. L.
    Hawker, D. W.
    Norbury, J.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 1233 - 1239
  • [13] Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
    Choi, Yun Young
    Kim, Seongyoon
    Kim, Soowhan
    Choi, Jung-Il
    JOURNAL OF POWER SOURCES, 2020, 450
  • [14] Distributed joint parameter and state estimation algorithm for large-scale interconnected systems
    Hamdi, Mounira
    Kamoun, Samira
    Idoumghar, Lhassane
    Chaoui, Mondher
    Kachouri, Abdenaceur
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2024, 38 (04) : 1403 - 1419
  • [15] Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints
    Yesim Serinagaoglu Dogrusoz
    Alireza Mazloumi Gavgani
    Medical & Biological Engineering & Computing, 2013, 51 : 367 - 375
  • [16] Generalized Extended Stochastic Gradient Algorithm Implemented Parameter Identification for Complex Multivariable-Systems
    Wang, Wei
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 663 - 673
  • [17] State estimation-based parameter identification for a class of nonlinear fractional-order systems
    Oliva-Gonzalez, Lorenz Josue
    Martinez-Guerra, Rafael
    NONLINEAR DYNAMICS, 2024, 112 (08) : 6379 - 6402
  • [18] Genetic algorithm-based regularization parameter estimation for the inverse electrocardiography problem using multiple constraints
    Dogrusoz, Yesim Serinagaoglu
    Gavgani, Alireza Mazloumi
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2013, 51 (04) : 367 - 375
  • [19] Identification of complex Bragg Gratings based on optical transfer function estimation using Genetic Algorithm
    Rostami, A.
    Yazdanpanah-Goharrizi, A.
    Yazdanpanah-Goharrizi, A.
    Janabi-Sharifi, F.
    OPTOMECHATRONIC ACTUATORS, MANIPULATION, AND SYSTEMS CONTROL, 2006, 6374
  • [20] Two-stage fractional least mean square identification algorithm for parameter estimation of CARMA systems
    Raja, Muhammad Asif Zahoor
    Chaudhary, Naveed Ishtiaq
    SIGNAL PROCESSING, 2015, 107 : 327 - 339