Embedded multiple shooting methodology in a genetic algorithm framework for parameter estimation and state identification of complex systems

被引:4
|
作者
Sarode, Ketan Dinkar [1 ,2 ,3 ]
Kumar, V. Ravi [1 ,2 ,3 ]
Kulkarni, B. D. [1 ,2 ,3 ]
机构
[1] CSIR NCL, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
[2] CSIR NCL, CoESC, Pune 411008, Maharashtra, India
[3] Acad Sci & Innovat Res AcSIR, Pune, Maharashtra, India
关键词
Parameter estimation; Multiple shooting; Genetic algorithm; Canonical models; Chaotic dynamics; Noise reduction; ORDINARY DIFFERENTIAL-EQUATIONS; GLOBAL OPTIMIZATION; SPATIOTEMPORAL CHAOS; BIOCHEMICAL PATHWAYS; DYNAMIC OPTIMIZATION; SCATTER SEARCH; S-SYSTEMS; MODELS; SYNCHRONIZATION; EFFICIENT;
D O I
10.1016/j.ces.2015.05.040
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel parameter estimation and state identification algorithm for nonlinear dynamical systems from data by embedding a multiple shooting methodology in the framework of a genetic algorithm (EMSGA) is described. The advantages of EMSGA are brought out by studies with two highly nonlinear examples, viz., the chaotic dynamics of a non-isothermal CSTR and the glycolysis regulation in Lactococcus lactis for production of lactic acid. For the chaotic dynamics with extremely high sensitivity to parameter values and initial conditions, EMSGA accurately estimates all process parameters while at the same time recovering the true dynamics of monitored and unmonitored variables from limited extents of noisy dynamic data. The superiority in accuracy and computational time of EMSGA over standalone genetic or multiple shooting algorithms for parameter estimation is shown for comparison purposes. In fact, EMSGA adapts well to the use of generalized canonical models, e.g., the S-system, where use of the fundamental Taylor series method of any order for integration becomes possible. This makes EMSGA highly efficient and exemplified here by estimating all the parameters of the derived higher dimensional 5-system model for the CSTR. Comparative studies with a well-known global-local enhanced scatter search method corroborate the suitability and advantages of the EMSGA methodology. For the glycolysis regulation example the numerical robustness of EMSGA is brought out by estimating a large number of model parameters when a majority of them are raised to the power of the state variables. Interestingly, we show that from noisy in vivo dynamic data it becomes possible to completely recover the noise-free dynamical behavior of unmonitored species concentrations using EMSGA. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:605 / 618
页数:14
相关论文
共 37 条
  • [1] A novel RNA genetic algorithm for parameter estimation of dynamic systems
    Wang, Kangtai
    Wang, Ning
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2010, 88 (11A) : 1485 - 1493
  • [2] An improved RNA genetic algorithm for the parameter estimation multiple solutions of ordinary differential equations
    Si, XinYi
    Lu, JunWei
    Zhang, Xiao
    Zhang, JingXian
    13TH GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT, 2017, 174 : 477 - 481
  • [3] A hybrid DNA based genetic algorithm for parameter estimation of dynamic systems
    Dai, Kan
    Wang, Ning
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2012, 90 (12) : 2235 - 2246
  • [4] A Modified Multiple Shooting Algorithm for Parameter Estimation in ODEs Using Adjoint Sensitivity Analysis
    Aydogmus, Ozgur
    Tor, Ali Hakan
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 390
  • [5] A novel RNA genetic algorithm for the parameter estimation of the fluid mechanics with multiple solutions
    Fang, GuoHua
    Si, XinYi
    Chen, XiaoPing
    Zhou, JianHui
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 4679 - +
  • [6] Parameter estimation algorithm for state space systems with time-delay based on the iterative identification
    Gu, Ya
    Liu, Jicheng
    Zhu, Peiyi
    Chou, Yongxin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC), 2018,
  • [7] On simultaneous parameter identification and state estimation for cascade state affine systems
    Ghanes, M.
    Zheng, G.
    De Leon-Morales, J.
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 45 - +
  • [8] A Novel RNA Genetic Algorithm for the Parameter Estimation of the Ordinary Differential Equations with Multiple Solutions
    Si, XinYi
    Fang, GuoHua
    Si, XinHui
    Yang, Fei
    Guo, Wei
    Wang, Ting
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (9B): : 118 - 120
  • [9] Parameter and State Estimation for Uncertain Linear Systems by Multiple Observers
    Muramatsu, Eiichi
    Ikeda, Masao
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2011, 9 (04) : 617 - 626
  • [10] Parameter and state estimation for uncertain linear systems by multiple observers
    Eiichi Muramatsu
    Masao Ikeda
    International Journal of Control, Automation and Systems, 2011, 9 : 617 - 626