Thermal conductivity of Al-SiC composites with monomodal and bimodal particle size distribution

被引:140
作者
Molina, J. M. [1 ,2 ,3 ]
Narciso, J. [2 ,4 ]
Weber, L. [3 ]
Mortensen, A. [3 ]
Louis, E. [1 ,2 ]
机构
[1] Univ Alicante, Dept Fis Aplicada, E-03080 Alicante, Spain
[2] Univ Alicante, IUMA, E-03080 Alicante, Spain
[3] Ecole Polytech Fed Lausanne, Lab Mech Met, EPFL, CH-1015 Lausanne, Switzerland
[4] Univ Alicante, Dept Quim Inorgan, E-03080 Alicante, Spain
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2008年 / 480卷 / 1-2期
关键词
thermal conductivity; size-effect; Al-SiC; bimodal mixtures; modeling;
D O I
10.1016/j.msea.2007.07.026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal conductivity of aluminum matrix composites having a high volume fraction of SiC particles is investigated by comparing data for composites fabricated by infiltrating liquid aluminum into preforms made either from a single particle size, or by mixing and packing SiC particles of two largely different average sizes (170 and 16 mu m). For composites based on powders with a monomodal size distribution, the thermal conductivity increases steadily from 151 W/m K for particles of average diameter 8 mu m to 216 W/m K for 170 mu m particles. For the bimodal particle mixtures the thermal conductivity increases with increasing volume fraction of coarse particles and reaches a roughly constant value of 220 W/m K for mixtures with 40 or more vol.% of coarse particles. It is shown that all present data can be accounted for by the differential effective medium (DEM) scheme taking into account a finite interfacial thermal resistance. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:483 / 488
页数:6
相关论文
共 29 条
[1]  
[Anonymous], 2000, COMPREHENSIVE COMPOS
[2]   Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions [J].
Arpón, R ;
Molina, JM ;
Saravanan, RA ;
García-Cordovilla, C ;
Louis, E ;
Narciso, J .
ACTA MATERIALIA, 2003, 51 (11) :3145-3156
[3]  
Ashcroft N. W., 1976, SOLID STATE PHYS, P21
[4]  
BASS J, 1982, RESISTIVITY DILUTE A, P166
[5]   THE EFFECTIVE CONDUCTIVITY OF COMPOSITES WITH IMPERFECT THERMAL CONTACT AT CONSTITUENT INTERFACES [J].
BENVENISTE, Y ;
MILOH, T .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1986, 24 (09) :1537-1552
[6]  
CHEN FC, 1976, J PHYS D, V9, P571
[7]   Effective conductivity of periodic arrays of spheres with interfacial resistance [J].
Cheng, H ;
Torquato, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1997, 453 (1956) :145-161
[8]  
CHUNG DDL, 2000, COMPREHENSIVE COMPOS, V6, P701
[9]   THE EFFECTIVE THERMAL-CONDUCTIVITY OF COMPOSITES WITH COATED REINFORCEMENT AND THE APPLICATION TO IMPERFECT INTERFACES [J].
DUNN, ML ;
TAYA, M .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (04) :1711-1722
[10]   THE EFFECT OF PARTICLE-SIZE ON THE THERMAL-CONDUCTIVITY OF ZNS DIAMOND COMPOSITES [J].
EVERY, AG ;
TZOU, Y ;
HASSELMAN, DPH ;
RAJ, R .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (01) :123-129