1064 nm InGaAsP multi-junction laser power converters

被引:26
作者
Yin, Jiajing [1 ,2 ]
Sun, Yurun [1 ]
Yu, Shuzhen [1 ]
Zhao, Yongming [1 ]
Li, Rongwei [1 ]
Dong, Jianrong [1 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Key Lab Nano Devices & Applicat, Suzhou 215123, Peoples R China
[2] Univ Sci & Technol China, Nano Sci & Technol Inst, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
InGaAsP; multi-junction laser power converter; conversion efficiency; PHOTOVOLTAIC CONVERTERS; GAAS; EFFICIENCY; JUNCTIONS; CELL;
D O I
10.1088/1674-4926/41/6/062303
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile, 1064 nm InGaAsP multi-junction laser power converters have been developed using p(+)-InGaAs/n(+)-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition (MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperatureI-Vmeasurements show that the 1 x 1 cm(2)triple-junction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm(2), with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
Andreev V, 2003, WORL CON PHOTOVOLT E, P761
[2]   OPTICAL-PROPERTIES OF IN1-XGAXP1-YASY, INP, GAAS, AND GAP DETERMINED BY ELLIPSOMETRY [J].
BURKHARD, H ;
DINGES, HW ;
KUPHAL, E .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (01) :655-662
[3]   High-photovoltage GaAs vertical epitaxial monolithic heterostructures with 20 thin p/n junctions and a conversion efficiency of 60% [J].
Fafard, S. ;
Proulx, F. ;
York, M. C. A. ;
Richard, L. S. ;
Provost, P. O. ;
Ares, R. ;
Aimez, V. ;
Masson, D. P. .
APPLIED PHYSICS LETTERS, 2016, 109 (13)
[4]   Advances with vertical epitaxial heterostructure architecture (VEHSA) phototransducers for optical to electrical power conversion efficiencies exceeding 50 percent [J].
Fafard, S. ;
Proulx, F. ;
York, M. C. A. ;
Wilkins, M. ;
Valdivia, C. E. ;
Bajcsy, M. ;
Ban, D. ;
Jaouad, A. ;
Bouzazi, B. ;
Ares, R. ;
Aimez, V. ;
Hinzer, K. ;
Masson, D. P. .
PHYSICS, SIMULATION, AND PHOTONIC ENGINEERING OF PHOTOVOLTAIC DEVICES V, 2016, 9743
[5]   Ultrahigh efficiencies in vertical epitaxial heterostructure architectures [J].
Fafard, S. ;
York, M. C. A. ;
Proulx, F. ;
Valdivia, C. E. ;
Wilkins, M. M. ;
Ares, R. ;
Aimez, V. ;
Hinzer, K. ;
Masson, D. P. .
APPLIED PHYSICS LETTERS, 2016, 108 (07)
[6]   GaAs converter for high power laser diode [J].
Fave, A ;
Kaminski, A ;
Gavand, M ;
Mayet, L ;
Laugier, A .
CONFERENCE RECORD OF THE TWENTY FIFTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1996, 1996, :101-104
[7]   45-PERCENT EFFICIENT SILICON PHOTOVOLTAIC CELL UNDER MONOCHROMATIC LIGHT [J].
GREEN, MA ;
ZHAO, J ;
WANG, A ;
WENHAM, SR .
IEEE ELECTRON DEVICE LETTERS, 1992, 13 (06) :317-318
[8]   Influence of the mesa electrode position on monolithic on-chip series-interconnect GaAs laser power converter performance [J].
Guan, ChengGang ;
Liu, Wen ;
Gao, Qian .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2018, 75 :136-142
[9]   InGaAs metamorphic laser (1064 nm) power converters with over 40% efficiency [J].
Kalyuzhnyy, N. A. ;
Mintairov, S. A. ;
Nadtochiy, A. M. ;
Nevedomskiy, V. N. ;
Rybalchenko, D. V. ;
Shvarts, M. Z. .
ELECTRONICS LETTERS, 2017, 53 (03) :173-175
[10]   GaInAsP/InP-Based Laser Power Converters (=1064 nm) [J].
Khvostikov, V. P. ;
Sorokina, S. V. ;
Potapovich, N. S. ;
Levin, R. V. ;
Marichev, A. E. ;
Timoshina, N. Kh. ;
Pushnyi, B. V. .
SEMICONDUCTORS, 2018, 52 (13) :1748-1753