Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission

被引:342
作者
Gromley, A
Yeaman, C
Rosa, J
Redick, S
Chen, CT
Mirabelle, S
Guha, M
Sillibourne, J
Doxsey, SJ [1 ]
机构
[1] Univ Massachusetts, Med Ctr, Program Mol Med, Worcester, MA 01605 USA
[2] Univ Iowa, Dept Cell Biol & Anat, Iowa City, IA 52242 USA
关键词
D O I
10.1016/j.cell.2005.07.027
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The terminal step in cytokinesis, called abscission, requires resolution of the membrane connection between two prospective daughter cells. Our previous studies demonstrated that the coiled-coil protein centriolin localized to the midbody during cytokinesis and was required for abscission. Here we show that centriolin interacts with proteins of vesicle-targeting exocyst complexes and vesicle-fusion SNARE complexes. These complexes require centriolin for localization to a unique midbody-ring structure, and disruption of either complex inhibits abscission. Exocyst disruption induces accumulation of v-SNARE-containing vesicles at the midbody ring. In control cells, these v-SNARE vesicles colocalize with a GFP-tagged secreted polypeptide. The vesicles move to the midbody ring asymmetrically from one prospective daughter cell; the GFP signal is rapidly lost, suggesting membrane fusion; and subsequently the cell cleaves at the site of vesicle delivery/fusion. We propose that centriolin anchors protein complexes required for vesicle targeting and fusion and integrates membrane-vesicle fusion with abscission.
引用
收藏
页码:75 / 87
页数:13
相关论文
共 50 条
[1]   Membrane traffic: a driving force in cytokinesis [J].
Albertson, R ;
Riggs, B ;
Sullivan, W .
TRENDS IN CELL BIOLOGY, 2005, 15 (02) :92-101
[2]   The R-SNARE endobrevin/VAMP-8 mediates homotypic fusion of early endosomes and late endosomes [J].
Antonin, W ;
Holroyd, C ;
Tikkanen, R ;
Höning, S ;
Jahn, R .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (10) :3289-3298
[3]  
Blum R, 2000, J CELL SCI, V113, P3151
[4]   Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells [J].
Buxton, P ;
Zhang, XM ;
Walsh, B ;
Sriratana, A ;
Schenberg, I ;
Manickam, E ;
Rowe, T .
BIOCHEMICAL JOURNAL, 2003, 375 :433-440
[5]   The bud scar-based screening system for hunting human genes extending life span [J].
Chen, C ;
Contreras, R .
STRATEGIES FOR ENGINEERED NEGLIGIBLE SENESCENCE: WHY GENUINE CONTROL OF AGING MAY BE FORESEEABLE, 2004, 1019 :355-359
[6]   Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex [J].
Chheda, MG ;
Ashery, U ;
Thakur, P ;
Rettig, J ;
Sheng, ZH .
NATURE CELL BIOLOGY, 2001, 3 (04) :331-338
[7]   Characterization of GAPCenA, a GTPase activating protein for Rab6, part of which associates with the centrosome [J].
Cuif, MH ;
Possmayer, F ;
Zander, H ;
Bordes, N ;
Jollivet, F ;
Couedel-Courteille, A ;
Janoueix-Lerosey, I ;
Langsley, G ;
Bornens, M ;
Goud, B .
EMBO JOURNAL, 1999, 18 (07) :1772-1782
[8]   Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome [J].
Dictenberg, JB ;
Zimmerman, W ;
Sparks, CA ;
Young, A ;
Vidair, C ;
Zheng, YX ;
Carrington, W ;
Fay, FS ;
Doxsey, SJ .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :163-174
[9]   Spatial coordination of cytokinetic events by compartmentalization of the cell cortex [J].
Dobbelaere, J ;
Barral, Y .
SCIENCE, 2004, 305 (5682) :393-396
[10]   Re-evaluating centrosome function [J].
Doxsey, S .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2001, 2 (09) :688-698