A Class of Pseudo-Real Riemann Surfaces with Diagonal Automorphism Group

被引:0
作者
Badr, Eslam [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza 12613, Egypt
关键词
pseudo-real Riemann surface; field of moduli; field of definition; plane curve; automorphism group; DEFINITION; JACOBIANS; CURVES; FIELDS; MODULI;
D O I
10.1142/S1005386720000206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemann surface S having field of moduli R, but not a field of definition, is called pseudo-real. This means that S has anticonformal automorphisms, but none of them is an involution. A Riemann surface is said to be plane if it can be described by a smooth plane model of some degree d >= 4 in P-C(2). We characterize pseudo-real-plane Riemann surfaces S, whose conformal automorphism group Aut(+) (S) is PGL(3 )(C)-conjugate to a finite non-trivial group that leaves invariant infinitely many points of P-C(2). In particular, we show that such pseudo-real-plane Riemann surfaces exist only if Aut(+) (S) is cyclic of even order n dividing the degree d. Explicit families of pseudo-real-plane Riemann surfaces are given for any degree d = 2pm with m > 1 odd, p prime and n = d/p.
引用
收藏
页码:247 / 262
页数:16
相关论文
共 26 条
  • [1] Automorphism groups of pseudoreal Riemann surfaces
    Artebani, Michela
    Quispe, Saul
    Reyes, Cristian
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (09) : 2383 - 2407
  • [2] Fields of moduli and fields of definition of odd signature curves
    Artebani, Michela
    Quispe, Saul
    [J]. ARCHIV DER MATHEMATIK, 2012, 99 (04) : 333 - 344
  • [3] Riemann surfaces defined over the reals
    Badr, Eslam
    Hidalgo, Ruben A.
    Quispe, Saul
    [J]. ARCHIV DER MATHEMATIK, 2018, 110 (04) : 351 - 362
  • [4] Automorphism Groups of Nonsingular Plane Curves of Degree 5
    Badr, Eslam
    Bars, Francesc
    [J]. COMMUNICATIONS IN ALGEBRA, 2016, 44 (10) : 4327 - 4340
  • [5] Non-singular plane curves with an element of "large" order in its automorphism group
    Badr, Eslam
    Bars, Francesc
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2016, 26 (02) : 399 - 433
  • [6] Minimal genus problem for pseudo-real Riemann surfaces
    Baginski, Czeslaw
    Gromadzki, Grzegorz
    [J]. ARCHIV DER MATHEMATIK, 2010, 95 (05) : 481 - 492
  • [7] BARS F., 2012, Surveys in Math. and Math. Sciences, V2, P83
  • [8] PSEUDO-REAL RIEMANN SURFACES AND CHIRAL REGULAR MAPS
    Bujalance, Emilio
    Conder, Marston D. E.
    Costa, Antonio F.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (07) : 3365 - 3376
  • [9] Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437
  • [10] Earle C. J., 1971, Ann. of Math. Stud., V66, P119