Machine learning analysis of broadband optical reflectivity of semiconductor thin film

被引:10
作者
Lee, Byeoungju [1 ,2 ]
Yu, Kwangnam [3 ]
Jeon, Jiwon [4 ]
Choi, E. J. [1 ]
机构
[1] Univ Seoul, Dept Phys, Seoul 130743, South Korea
[2] Univ Seoul, Dept Smart City, Seoul 130743, South Korea
[3] SK Siltron Inc, 132-11,3gongdan 3 Ro, Gumi Si 39400, Gyeongsangbuk D, South Korea
[4] Univ Seoul, NSRI Nat Sci Res Inst, Seoul 130743, South Korea
关键词
Optical spectroscopy; Machine learning; Infrared reflection; REFRACTIVE-INDEX; THICKNESS;
D O I
10.1007/s40042-022-00436-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Broadband reflection spectroscopy is a non-invasive and non-contact tool widely used to measure optical dielectric constants and thickness of thin films. However, a lot of time and effort are consumed to analyze data before the results can be attained. Here we construct an artificial neural network (ANN) using scattering matrix formalism and U-net architecture, and apply it to analyze infrared reflection of SiO2 thin film grown on Si substrate. The ANN returns multiple outputs-frequency-dependent optical refractive index (n), absorption coefficient(kappa), and thickness of the film (d)-with high precision with 0.6 nm thickness difference. Furthermore, the ANN can fit large number of reflection data taken at numerous positions (500) of the thin film in short time less than 150 ms, and creates fine-scale thickness map with 0.6 nm thickness resolution. This work demonstrates that U-net-based ANN is a powerful method of reflectivity analysis and can be applied to other thin-film materials.
引用
收藏
页码:347 / 351
页数:5
相关论文
共 19 条
  • [1] Thin sample refractive index by transmission spectroscopy
    Brindza, Michael
    Flynn, Richard A.
    Shirk, James S.
    Beadie, G.
    [J]. OPTICS EXPRESS, 2014, 22 (23): : 28537 - 28552
  • [2] Dyakov SA., 2010, INT SOC OPT PHOTON, V7521
  • [3] Edwards DavidF., 1997, Handbook of Optical Constants of Solids
  • [4] Surface and thickness measurement of a transparent film using wavelength scanning interferometry
    Gao, Feng
    Muhamedsalih, Hussam
    Jiang, Xiangqian
    [J]. OPTICS EXPRESS, 2012, 20 (19): : 21450 - 21456
  • [5] Fast fitting of reflectivity data of growing thin films using neural networks
    Greco, Alessandro
    Starostin, Vladimir
    Karapanagiotis, Christos
    Hinderhofer, Alexander
    Gerlach, Alexander
    Pithan, Linus
    Liehr, Sascha
    Schreiber, Frank
    Kowarik, Stefan
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 : 1342 - 1347
  • [6] Deep learning as phase retrieval tool for CARS spectra
    Houhou, Rola
    Barman, Parijat
    Schmitt, Micheal
    Meyer, Tobias
    Popp, Juergen
    Bocklitz, Thomas
    [J]. OPTICS EXPRESS, 2020, 28 (14) : 21002 - 21024
  • [7] Deep learning can accelerate and quantify simulated localized correlated spectroscopy
    Iqbal, Zohaib
    Nguyen Dan
    Thomas, Michael Albert
    Jiang, Steve
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Kassim YM, 2019, IEEE IMAGE PROC, P1445, DOI [10.1109/ICIP.2019.8803084, 10.1109/icip.2019.8803084]
  • [9] Improved Measurement of Thin Film Thickness in Spectroscopic Reflectometer Using Convolutional Neural Networks
    Kim, Min-Gab
    [J]. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2020, 21 (02) : 219 - 225
  • [10] Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry
    Kim, SW
    Kim, GH
    [J]. APPLIED OPTICS, 1999, 38 (28) : 5968 - 5973