Frankel conjecture and Sasaki geometry

被引:30
作者
He, Weiyong [1 ]
Sun, Song [2 ,3 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Imperial Coll, Dept Math, London SW7 2AZ, England
[3] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Sasaki manifolds; Frankel conjecture; Positivity; COMPACT KAHLER-MANIFOLDS; RICCI FLOW; SCALAR CURVATURE; SPACE; 2-ORBIFOLDS; UNIQUENESS;
D O I
10.1016/j.aim.2015.11.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify simply connected compact Sasaki manifolds of dimension 2n + 1 with positive transverse bisectional curvature. In particular, the Kahler cone corresponding to such manifolds must be bi-holomorphic to Cn+1\{0}. As an application we recover the theorem of Mori and Siu-Yau on the Frankel conjecture and extend it to certain orbifold version. The main idea is to deform such Sasaki manifolds to the standard round sphere in two steps, both fixing the complex structure on the Kahler cone. First, we deform the metric along the Sasaki-Ricci flow and obtain a limit Sasaki-Ricci soliton with positive transverse bisectional curvature. Then by varying the Reeb vector field which essentially decreases the volume functional, we deform the Sasaki-Ricci soliton to a Sasaki-Einstein metric with positive transverse bisectional curvature, i.e. a round sphere. The second deformation is only possible when one treats simultaneously regular and irregular Sasaki manifolds, even if the manifold one starts with is regular (quasi-regular), i.e. Kahler manifolds (orbifolds). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:912 / 960
页数:49
相关论文
共 59 条
[1]  
[Anonymous], 1969, Tohoku Math. J., DOI 10.2748/tmj/1178242960
[2]  
[Anonymous], 2008, Oxford Math. Monogr
[3]  
[Anonymous], 1970, Duke Math. J.
[4]  
BANDO S, 1984, J DIFFER GEOM, V19, P283
[5]   On the metric structure of non-Kahler complex surfaces [J].
Belgun, FA .
MATHEMATISCHE ANNALEN, 2000, 317 (01) :1-40
[6]  
Berger M., 1965, C R MATH ACAD SCI PA, V260, P1554
[7]  
Böhm C, 2008, ANN MATH, V167, P1079
[8]   Canonical sasakian metrics [J].
Boyer, Charles P. ;
Galicki, Krzysztof ;
Simanca, Santiago R. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (03) :705-733
[9]   On Eta-Einstein Sasakian geometry [J].
Boyer, CP ;
Galicki, K ;
Matzeu, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :177-208
[10]  
Brendle S, 2009, J AM MATH SOC, V22, P287