AN hp-VERSION DISCONTINUOUS GALERKIN METHOD FOR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE

被引:45
作者
Mustapha, K. [1 ]
Brunner, H. [2 ,3 ]
Mustapha, H. [4 ]
Schoetzau, D. [5 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[3] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[4] McGill Univ, Dept Min & Mat Engn, Montreal, PQ, Canada
[5] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
parabolic Volterra integro-differential equation; weakly singular kernel; hp-version DG time-stepping; exponential convergence; finite element method; fully discrete scheme; ORDINARY DIFFERENTIAL-EQUATIONS; ACCURATE NUMERICAL-METHOD; WEAKLY SINGULAR KERNEL; TIME DISCRETIZATION; EVOLUTION EQUATION; POSITIVE-TYPE; MEMORY TERM; APPROXIMATIONS;
D O I
10.1137/100797114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the numerical solution of a class of parabolic integro-differential equations with weakly singular kernels. We use an hp-version discontinuous Galerkin (DG) method for the discretization in time. We derive optimal hp-version error estimates and show that exponential rates of convergence can be achieved for solutions with singular (temporal) behavior near t = 0 caused by the weakly singular kernel. Moreover, we prove that by using nonuniformly refined time steps, optimal algebraic convergence rates can be achieved for the h-version DG method. We then combine the DG time-stepping method with a standard finite element discretization in space, and present an optimal error analysis of the resulting fully discrete scheme. Our theoretical results are numerically validated in a series of test problems.
引用
收藏
页码:1369 / 1396
页数:28
相关论文
共 28 条
[1]  
[Anonymous], 2006, SPRINGER SER COMPUT
[2]   hp-discontinuous Galerkin time-stepping for Volterra integrodifferential equations [J].
Brunner, H ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (01) :224-245
[3]   FINITE-ELEMENT APPROXIMATION OF A PARABOLIC INTEGRODIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL [J].
CHEN, C ;
THOMEE, V ;
WAHLBIN, LB .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :587-602
[4]  
DELFOUR M, 1981, MATH COMPUT, V36, P455, DOI 10.1090/S0025-5718-1981-0606506-0
[5]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[6]   A-POSTERIORI ERROR-BOUNDS AND GLOBAL ERROR CONTROL FOR APPROXIMATION OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ESTEP, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (01) :1-48
[7]   VOLTERRA INTEGRAL EQUATIONS IN BANACH SPACE [J].
FRIEDMAN, A ;
SHINBROT, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 126 (01) :131-&
[8]  
HEARD ML, 1982, SIAM J MATH ANAL, V13, P81, DOI 10.1137/0513006
[10]   Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method [J].
Larsson, S ;
Thomee, V ;
Wahlbin, LB .
MATHEMATICS OF COMPUTATION, 1998, 67 (221) :45-71