On viscosity solutions of irregular Hamilton-Jacobi equations

被引:6
作者
Strömberg, T [1 ]
机构
[1] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
关键词
D O I
10.1007/s00013-003-0573-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that the initial-value problem for u(t) + H(x, delu) = 0 admits a unique continuous viscosity solution under certain conditions which do not exclude that H(x, p) is discontinuous in x. Particular attention is devoted to the linear transport equation u(t) + a(x) . delu = 0, where a may be discontinuous.
引用
收藏
页码:678 / 688
页数:11
相关论文
共 12 条
[1]   ONE-DIMENSIONAL TRANSPORT EQUATIONS WITH DISCONTINUOUS COEFFICIENTS [J].
Bouchut, F. ;
James, F. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (07) :891-933
[2]  
Capuzzo Dolcetta I., 1996, ADV MATH SCI APPL, V6, P689
[3]  
Colombini F, 2002, DUKE MATH J, V111, P357
[5]   REMARKS ON THE EXISTENCE AND UNIQUENESS OF UNBOUNDED VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
ILLINOIS JOURNAL OF MATHEMATICS, 1987, 31 (04) :665-688
[6]  
CRANDALL MG, 1987, J MATH SOC JPN, V39, P581
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[9]   Linear transport equations with discontinuous coefficients [J].
Petrova, G ;
Popov, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (9-10) :1849-1873
[10]   Linear transport equations with μ-monotone coefficients [J].
Petrova, G ;
Popov, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 260 (02) :307-324