Analytic cycles, Bott-Chern forms, and singular sets for the Yang-Mills flow on Kahler manifolds

被引:16
作者
Sibley, Benjamin [1 ]
Wentworth, Richard A. [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, B-1050 Brussels, Belgium
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
Yang-Mills flow; Kahler manifold; Bott-Chern forms; RIEMANN-ROCH FORMULA; STABLE BUNDLES; CONNECTIONS; EXISTENCE; CURRENTS; THEOREM; SPACES;
D O I
10.1016/j.aim.2015.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the singular set for the Yang Mills flow on unstable holomorphic vector bundles over compact Kaller manifolds is completely determined by the Harder-Narasimhan-Seshadri filtration of the initial holomorphic bundle. We assign a multiplicity to irreducible top dimensional components of the singular set of a holomorphic bundle with a filtration by saturated subsheaves. We derive a singular Bott-Chern formula relating the second Chern form of a smooth metric on the bundle to the Chern current of an admissible metric on the associated graded sheaf. This is used to show that the multiplicities of the top dimensional bubbling locus defined via the Yang Mills density agree with the corresponding multiplicities for the Harder-Narasimhan-Seshadri filtration. The set theoretic equality of singular sets is a consequence. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:501 / 531
页数:31
相关论文
共 45 条
[1]  
[Anonymous], 1954, COMMENT MATH HELV, DOI DOI 10.1007/BF02566923
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]   REMOVABLE SINGULARITIES FOR HOLOMORPHIC VECTOR-BUNDLES [J].
BANDO, S .
TOHOKU MATHEMATICAL JOURNAL, 1991, 43 (01) :61-67
[4]  
Bando S., 1994, GEOMETRY ANAL COMPLE, P39
[5]   RIEMANN-ROCH AND TOPOLOGICAL K-THEORY FOR SINGULAR-VARIETIES [J].
BAUM, P ;
FULTON, W ;
MACPHERSON, R .
ACTA MATHEMATICA, 1979, 143 (3-4) :155-192
[6]  
Baum P., 1975, Publ. Math. IHES, V45, P101
[7]   BOTT-CHERN CURRENTS AND COMPLEX IMMERSIONS [J].
BISMUT, JM ;
GILLET, H ;
SOULE, C .
DUKE MATHEMATICAL JOURNAL, 1990, 60 (01) :255-284
[8]  
Borel A., 1958, Bull. Soc. Math. France, V86, P97
[9]  
DASKALOPOULOS GD, 1992, J DIFFER GEOM, V36, P699
[10]  
Daskalopoulos GD, 2004, J REINE ANGEW MATH, V575, P69