HEROHE Challenge: Predicting HER2 Status in Breast Cancer from Hematoxylin-Eosin Whole-Slide Imaging

被引:22
作者
Conde-Sousa, Eduardo [1 ,2 ]
Vale, Joao [1 ,3 ]
Feng, Ming [4 ]
Xu, Kele [5 ]
Wang, Yin [4 ]
Della Mea, Vincenzo [6 ]
La Barbera, David [6 ]
Montahaei, Ehsan [7 ]
Baghshah, Mahdieh [7 ]
Turzynski, Andreas [8 ]
Gildenblat, Jacob [9 ]
Klaiman, Eldad [10 ]
Hong, Yiyu [11 ]
Aresta, Guilherme [12 ,13 ]
Araujo, Teresa [12 ,13 ]
Aguiar, Paulo [1 ,2 ]
Eloy, Catarina [1 ,3 ,14 ]
Polonia, Antonio [1 ,3 ]
机构
[1] Univ Porto, I3S Inst Invest & Inovacao Saude, P-4200135 Porto, Portugal
[2] Univ Porto, INEB Inst Engn Biomed, P-4200135 Porto, Portugal
[3] Univ Porto, Inst Mol Pathol & Immunol, Dept Pathol, Ipatimup Diagnost, P-4200135 Porto, Portugal
[4] Tongji Univ, Coll Elect & Informat Engn, Shanghai 201804, Peoples R China
[5] Natl Univ Def Technol, Sch Comp, Changsha 410073, Peoples R China
[6] Univ Udine, Dept Math Comp Sci & Phys, I-33100 Udine, Italy
[7] Sharif Univ Technol, Comp Engn Dept, Tehran 1458889694, Iran
[8] Private Grp Practice Pathol, D-23552 Lubeck, Germany
[9] DeePathology, Hatidhar 5, IL-4365104 Raanana, Israel
[10] Roche Diagnost GmbH, Nonnenwald 2, D-82377 Penzberg, Germany
[11] Arontier Co Ltd, Dept R&D Ctr, Seoul 06735, South Korea
[12] INESC TEC Inst Syst & Comp Engn Technol & Sci, P-4200465 Porto, Portugal
[13] Univ Porto, FEUP Fac Engn, P-4200465 Porto, Portugal
[14] Univ Porto, FMUP Fac Med, P-4200319 Porto, Portugal
关键词
breast cancer; HER2; deep learning; computational pathology; PATHOLOGICAL PROGNOSTIC-FACTORS; TUMOR-INFILTRATING LYMPHOCYTES; ADJUVANT SYSTEMIC THERAPY; AMERICAN SOCIETY; ARTIFICIAL-INTELLIGENCE; CLINICAL ONCOLOGY/COLLEGE; GUIDE DECISIONS; TRASTUZUMAB; CHEMOTHERAPY; BIOMARKERS;
D O I
10.3390/jimaging8080213
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Breast cancer is the most common malignancy in women worldwide, and is responsible for more than half a million deaths each year. The appropriate therapy depends on the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2) transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge, a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the HER2 status in breast cancer based only on hematoxylin-eosin-stained tissue samples, thus avoiding specialized techniques. The challenge consisted of a large, annotated, whole-slide images dataset (509), specifically collected for the challenge. Models for predicting HER2 status were presented by 21 teams worldwide. The best-performing models are presented by detailing the network architectures and key parameters. Methods are compared and approaches, core methodologies, and software choices contrasted. Different evaluation metrics are discussed, as well as the performance of the presented models for each of these metrics. Potential differences in ranking that would result from different choices of evaluation metrics highlight the need for careful consideration at the time of their selection, as the results show that some metrics may misrepresent the true potential of a model to solve the problem for which it was developed. The HEROHE dataset remains publicly available to promote advances in the field of computational pathology.
引用
收藏
页数:24
相关论文
共 65 条
  • [1] Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI)
    Adadi, Amina
    Berrada, Mohammed
    [J]. IEEE ACCESS, 2018, 6 : 52138 - 52160
  • [2] Alex K., 2009, LEARNING MULTIPLE LA
  • [3] Estrogen and Progesterone Receptor Testing in Breast Cancer American Society of Clinical Oncology/College of American Pathologists Guideline Update
    Allison, Kimberly H.
    Hammond, M. Elizabeth H.
    Dowsett, Mitchell
    McKernin, Shannon E.
    Carey, Lisa A.
    Fitzgibbons, Patrick L.
    Hayes, Daniel F.
    Lakhani, Sunil R.
    Chavez-MacGregor, Mariana
    Perlmutter, Jane
    Perou, Charles M.
    Regan, Meredith M.
    Rimm, David L.
    Symmans, W. Fraser
    Torlakovic, Emina E.
    Varella, Leticia
    Viale, Giuseppe
    Weisberg, Tracey F.
    McShane, Lisa M.
    Wolff, Antonio C.
    [J]. ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2020, 144 (05) : 545 - 563
  • [4] Classification of breast cancer histology images using Convolutional Neural Networks
    Araujo, Teresa
    Aresta, Guilherme
    Castro, Eduardo
    Rouco, Jose
    Aguiar, Paulo
    Eloy, Catarina
    Polonia, Antonio
    Campilho, Aurelio
    [J]. PLOS ONE, 2017, 12 (06):
  • [5] BACH: Grand challenge on breast cancer histology images
    Aresta, Guilherme
    Araujo, Teresa
    Kwok, Scotty
    Chennamsetty, Sai Saketh
    Safwan, Mohammed
    Alex, Varghese
    Marami, Bahram
    Prastawa, Marcel
    Chan, Monica
    Donovan, Michael
    Fernandez, Gerardo
    Zeineh, Jack
    Kohl, Matthias
    Walz, Christoph
    Ludwig, Florian
    Braunewell, Stefan
    Baust, Maximilian
    Quoc Dang Vu
    Minh Nguyen Nhat To
    Kim, Eal
    Kwak, Jin Tae
    Galal, Sameh
    Sanchez-Freire, Veronica
    Brancati, Nadia
    Frucci, Maria
    Riccio, Daniel
    Wang, Yaqi
    Sun, Lingling
    Ma, Kaiqiang
    Fang, Jiannan
    Kone, Ismael
    Boulmane, Lahsen
    Campilho, Aurelio
    Eloy, Catarina
    Polonia, Antonio
    Aguiar, Paulo
    [J]. MEDICAL IMAGE ANALYSIS, 2019, 56 : 122 - 139
  • [6] Bailing Zhang, 2011, 2011 4th International Conference on Biomedical Engineering and Informatics, P180, DOI 10.1109/BMEI.2011.6098229
  • [7] QuPath: Open source software for digital pathology image analysis
    Bankhead, Peter
    Loughrey, Maurice B.
    Fernandez, Jose A.
    Dombrowski, Yvonne
    Mcart, Darragh G.
    Dunne, Philip D.
    McQuaid, Stephen
    Gray, Ronan T.
    Murray, Liam J.
    Coleman, Helen G.
    James, Jacqueline A.
    Salto-Tellez, Manuel
    Hamilton, Peter W.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [8] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [9] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [10] Chollet F., 2021, Int. J., V14, P1251