New phase field model for simulating galvanic and pitting corrosion processes

被引:87
作者
Mai, Weijie [1 ]
Soghrati, Soheil [1 ,2 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Phase field; Pitting corrosion; Galvanic corrosion; Finite element; Aluminum; FINITE-ELEMENT-METHOD; METAL-MATRIX COMPOSITES; LOCALIZED CORROSION; STAINLESS-STEEL; CURRENT DISTRIBUTIONS; MATHEMATICAL-MODEL; CREVICE CORROSION; PIT PROPAGATION; ALUMINUM-ALLOYS; SOLIDIFICATION;
D O I
10.1016/j.electacta.2017.12.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:290 / 304
页数:15
相关论文
共 50 条
[41]   Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits [J].
Valor, A. ;
Caleyo, F. ;
Alfonso, L. ;
Rivas, D. ;
Hallen, J. M. .
CORROSION SCIENCE, 2007, 49 (02) :559-579
[42]   New design pitting corrosion resistance stainless steel [J].
Otero, E ;
Botella, J ;
Botana, J ;
Matres, V ;
Merello, R .
REVISTA DE METALURGIA, 2005, 41 (02) :148-158
[43]   A phase field formulation for dissolution-driven stress corrosion cracking [J].
Cui, Chuanjie ;
Ma, Rujin ;
Martinez-Paneda, Emilio .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2021, 147 (147)
[44]   A nonlinear phase-field model of corrosion with charging kinetics of electric double layer [J].
Makuch, Maciej ;
Kovacevic, Sasa ;
Wenman, Mark R. ;
Martinez-Paneda, Emilio .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (07)
[45]   Predicting the risk of pitting corrosion initiation of stainless steels using a Markov chain model [J].
Brenna, Andrea ;
Bolzoni, Fabio ;
Lazzari, Luciano ;
Ormellese, Marco .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2018, 69 (03) :348-357
[46]   Phase Field Modeling of Crystallographic Corrosion Pits [J].
Sahu, Sarita ;
Frankel, Gerald S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (02)
[47]   Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution [J].
Wei, Jie ;
Dong, Junhua ;
Zhou, Yangtao ;
He, Xiaoyan ;
Wang, Changgang ;
Ke, Wei .
MATERIALS CHARACTERIZATION, 2018, 139 :401-410
[48]   A new approach for describing pitting corrosion of steel bars in concrete [J].
Guan, Xinchun ;
Miao, Lianjuan ;
Li, Hui ;
Ou, Jinping .
ANTI-CORROSION METHODS AND MATERIALS, 2017, 64 (06) :573-579
[49]   An efficient second-order linear scheme for the phase field model of corrosive dissolution [J].
Gao, Huadong ;
Ju, Lili ;
Duddu, Ravindra ;
Li, Hongwei .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
[50]   Simulating microgalvanic corrosion in alloys using the PRISMS phase-field framework [J].
Goel, Vishwas ;
Lyu, Yanjun ;
DeWitt, Stephen ;
Montiel, David ;
Thornton, Katsuyo .
MRS COMMUNICATIONS, 2022, 12 (06) :1050-1059