New phase field model for simulating galvanic and pitting corrosion processes

被引:87
作者
Mai, Weijie [1 ]
Soghrati, Soheil [1 ,2 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, 116 W 19Th Ave, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Phase field; Pitting corrosion; Galvanic corrosion; Finite element; Aluminum; FINITE-ELEMENT-METHOD; METAL-MATRIX COMPOSITES; LOCALIZED CORROSION; STAINLESS-STEEL; CURRENT DISTRIBUTIONS; MATHEMATICAL-MODEL; CREVICE CORROSION; PIT PROPAGATION; ALUMINUM-ALLOYS; SOLIDIFICATION;
D O I
10.1016/j.electacta.2017.12.086
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This manuscript presents a new phase field model for simulating galvanic and pitting corrosion phenomena in metallic materials. The Laplace equation is employed to approximate the electric potential distribution, which determines the phase evolution by relating the anodic current density to the interface kinetics parameter. While the anode is assumed to be nonpolarizable, the nonlinear polarization behavior including the diffusion-limited kinetics is considered as boundary condition on the cathode. Several numerical examples are presented to verify the accuracy of the proposed model. We also demonstrate the application of this model for simulating coupled galvanic-pitting corrosion processes in a hybrid joint and an aluminum composite material under varying environmental conditions. The last example simulates the corrosion of a steel wire, which shows the feasibility of incorporating homogeneous chemical reactions and polarization behavior on the anode into the proposed model. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:290 / 304
页数:15
相关论文
共 50 条
  • [21] Pitting and galvanic corrosion behavior of laser-welded stainless steels
    Kwok, C. T.
    Fong, S. L.
    Cheng, F. T.
    Man, H. C.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2006, 176 (1-3) : 168 - 178
  • [22] Anodic dissolution model with diffusion-migration transport for simulating localized corrosion
    Bouguezzi, Meriem
    Scheid, Jean-Francois
    Hilhorst, Danielle
    Matano, Hiroshi
    Bataillon, Christian
    Lequien, Florence
    Rouillard, Fabien
    ELECTROCHIMICA ACTA, 2024, 477
  • [23] Pitting and Localized Galvanic Corrosion Characteristics of Gas Tungsten Arc Welded Austenitic Stainless Steel
    Seunghyun Kim
    Gidong Kim
    Chang-Young Oh
    Sangwoo Song
    Metals and Materials International, 2022, 28 : 2448 - 2461
  • [24] Pitting and Localized Galvanic Corrosion Characteristics of Gas Tungsten Arc Welded Austenitic Stainless Steel
    Kim, Seunghyun
    Kim, Gidong
    Oh, Chang-Young
    Song, Sangwoo
    METALS AND MATERIALS INTERNATIONAL, 2022, 28 (10) : 2448 - 2461
  • [25] Electro-chemo-mechanical phase field modeling of localized corrosion: theory and COMSOL implementation
    Cui, Chuanjie
    Ma, Rujin
    Martinez-Paneda, Emilio
    ENGINEERING WITH COMPUTERS, 2023, 39 (06) : 3877 - 3894
  • [26] Phase field modeling of corrosion damage
    Imanian, Anahita
    Amiri, Mehdi
    CORROSION REVIEWS, 2022, 40 (04) : 343 - 354
  • [27] Numerical Study of Aluminum Pitting Corrosion Using a Two- Dimensional Multi-Species Transport Model
    Mouloudi, Meriyem
    Essahli, Mohamed
    Chhiba, Mostafa
    Chafi, Mohammed
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (12):
  • [28] Numerical investigation of critical electrochemical factors for pitting corrosion using a multi-species reactive transport model
    Sun, Xiangming
    Srinivasan, Jayendran
    Kelly, Robert G.
    Duddu, Ravindra
    CORROSION SCIENCE, 2021, 179
  • [29] A peridynamic model for galvanic corrosion and fracture
    Zhao, Jiangming
    Jafarzadeh, Siavash
    Rahmani, Mohammad
    Chen, Ziguang
    Kim, Yong-Rak
    Bobaru, Florin
    ELECTROCHIMICA ACTA, 2021, 391
  • [30] A microstructure-sensitive electro-chemo-mechanical phase-field model of pitting and stress corrosion cracking
    Makuch, Maciej
    Kovacevic, Sasa
    Wenman, Mark R.
    Martinez-Paneda, Emilio
    CORROSION SCIENCE, 2024, 232