Effect of the structure of polymer inclusion membranes on zn(II) transport from chloride aqueous solutions

被引:30
作者
Baczynska, Monika [1 ]
Regel-Rosocka, Magdalena [1 ]
Nowicki, Marek [2 ]
Wisniewski, Maciej [1 ]
机构
[1] Poznan Univ Tech, Inst Chem Technol & Engn, Fac Chem Technol, Berdychowo St 4, PL-60965 Poznan, Poland
[2] Poznan Univ Tech, Inst Phys, Fac Tech Phys, PL-60965 Poznan, Poland
关键词
cellulose triacetate; ionic liquids; membranes; poly(vinyl chloride); separation techniques; FACILITATED TRANSPORT; SELECTIVE TRANSPORT; IONIC LIQUIDS; METAL-IONS; EXTRACTION; ZINC(II); REMOVAL; PIM; MORPHOLOGY; SYSTEM;
D O I
10.1002/app.42319
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This article presents application of polymer inclusion membranes (PIM) containing polymer matrices: cellulose triacetate (CTA) or poly(vinyl) chloride (PVC), o-nitrophenyloctyl ether (NPOE) as a plasticizer and phosphonium ionic liquids, i.e., trihexyltetradecylphosphonium chloride (Cyphos IL 101), bis(2,4,4-trimethylpentyl)phosphinate (Cyphos IL 104) and tributyltetradecylphosphonium chloride (Cyphos IL 167), as carriers for Zn(II) transport from chloride medium. Cyphos IL167 application as an ion carrier in PIMs is reported for the first time. The membrane composition is found to affect Zn(II) transport significantly. SEM and AFM images show the differences in the surface morphology of PVC and CTA based membranes. Better transport abilities of CTA membranes (Zn(II) recovery factors exceed 80%) compared with those of PVC, indicate that the structural differences between the two polymers play a crucial role for the membrane permeability. The best initial flux and permeability coefficient are obtained for the membranes with Cyphos IL 101 and Cyphos IL 104 as carriers. (c) 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42319.
引用
收藏
页数:11
相关论文
共 36 条
  • [11] Atomic force microscopy analysis of cellulose triacetate surface modified in low temperature argon plasma and its adhesion behavior
    Koo, Kang
    Park, Young Mi
    Yu, Jae Yeong
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (04) : 3963 - 3971
  • [12] Kozlowski C., 2002, Physicochem. Probl. Miner. Process., V36, P115
  • [13] Transport of Cr(VI), Zn(II), and Cd(II) ions across polymer inclusion membranes with tridecyl(pyridine) oxide and tri-n-octylamine
    Kozlowski, CA
    Walkowiak, W
    [J]. SEPARATION SCIENCE AND TECHNOLOGY, 2004, 39 (13) : 3127 - 3141
  • [14] Kozowski C. A., 2007, IND ENG CHEM RES, V46, P5420
  • [15] Modification of preparation method for polymer inclusion membrane (PIM) to produce hollow fiber PIM
    Kusumocahyo, Samuel P.
    Kanamori, Toshiyuki
    Iwatsubo, Takashi
    Sumaru, Kimio
    Shinbo, Toshio
    Matsuyama, Hideto
    Teramoto, Masaaki
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 102 (05) : 4372 - 4377
  • [16] Selective metal ion sorption and transport using polymer inclusion membranes containing dicyclohexano-18-crown-6
    Lamb, JD
    Nazarenko, AY
    [J]. SEPARATION SCIENCE AND TECHNOLOGY, 1997, 32 (17) : 2749 - 2764
  • [17] Marszalkowska B, 2012, PRZEM CHEM, V91, P1374
  • [18] Phosphonium ionic liquids as new, reactive extractants of lactic acid
    Martak, J.
    Schlosser, S.
    [J]. CHEMICAL PAPERS, 2006, 60 (05) : 395 - 398
  • [19] Liquid-liquid equilibria of butyric acid for solvents containing a phosphonium ionic liquid
    Martak, Jan
    Schlosser, Stefan
    [J]. CHEMICAL PAPERS, 2008, 62 (01) : 42 - 50
  • [20] Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs)
    Nghiem, Long D.
    Mornane, Patrick
    Potter, Ian D.
    Perera, Jilska M.
    Cattrall, Robert W.
    Kolev, Spas D.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) : 7 - 41