Collaborative and Adversarial Network for Unsupervised domain adaptation

被引:404
作者
Zhang, Weichen [1 ]
Ouyang, Wanli [1 ]
Li, Wen [2 ]
Xu, Dong [1 ]
机构
[1] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW, Australia
[2] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
来源
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2018年
关键词
D O I
10.1109/CVPR.2018.00400
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a new unsupervised domain adaptation approach called Collaborative and Adversarial Network (CAN) through domain-collaborative and domain adversarial training of neural networks. We add several domain classifiers on multiple CNN feature extraction blocks1, in which each domain classifier is connected to the hidden representations from one block and one loss function is defined based on the hidden presentation and the domain labels (e.g., source and target). We design a new loss function by integrating the losses from all blocks in order to learn domain informative representations from lower blocks through collaborative learning and learn domain uninformative representations from higher blocks through adversarial learning. We further extend our CAN method as Incremental CAN (iCAN), in which we iteratively select a set of pseudo labelled target samples based on the image classifier and the last domain classifier from the previous training epoch and re-train our CAN model by using the enlarged training set. Comprehensive experiments on two benchmark datasets Office and ImageCLEF-DA clearly demonstrate the effectiveness of our newly proposed approaches CAN and iCAN for unsupervised domain adaptation.
引用
收藏
页码:3801 / 3809
页数:9
相关论文
共 29 条
[1]  
[Anonymous], 2016, 29 ADV NEURAL INF PR
[2]  
[Anonymous], 2016, ADV NEURAL INFORM PR
[3]  
[Anonymous], 2017, Proc Mach Learn Res
[4]   Unsupervised Domain Adaptation by Domain Invariant Projection [J].
Baktashmotlagh, Mahsa ;
Harandi, Mehrtash T. ;
Lovell, Brian C. ;
Salzmann, Mathieu .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :769-776
[5]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[6]   Domain Adaptation Problems: A DASVM Classification Technique and a Circular Validation Strategy [J].
Bruzzone, Lorenzo ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) :770-787
[7]   Recognizing RGB Images by Learning from RGB-D Data [J].
Chen, Lin ;
Li, Wen ;
Xu, Dong .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :1418-1425
[8]  
Chen M., 2011, P 24 INT C NEUR INF, P2456
[9]   Domain Adaptation from Multiple Sources: A Domain-Dependent Regularization Approach [J].
Duan, Lixin ;
Xu, Dong ;
Tsang, Ivor Wai-Hung .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (03) :504-518
[10]   Domain Transfer Multiple Kernel Learning [J].
Duan, Lixin ;
Tsang, Ivor W. ;
Xu, Dong .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (03) :465-479