ESTIMATION FOR MISSPECIFIED ERGODIC DIFFUSION PROCESSES FROM DISCRETE OBSERVATIONS
被引:18
作者:
Uchida, Masayuki
论文数: 0引用数: 0
h-index: 0
机构:
Osaka Univ Toyonaka, Grad Sch Engn Sci, Osaka 5608531, Japan
Japan Sci & Technol Agcy, CREST, Tokyo, JapanOsaka Univ Toyonaka, Grad Sch Engn Sci, Osaka 5608531, Japan
Uchida, Masayuki
[1
,2
]
Yoshida, Nakahiro
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, JapanOsaka Univ Toyonaka, Grad Sch Engn Sci, Osaka 5608531, Japan
Yoshida, Nakahiro
[3
]
机构:
[1] Osaka Univ Toyonaka, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
Diffusion process;
misspecified model;
discrete time observations;
minimum contrast estimator;
rate of convergence;
D O I:
10.1051/ps/2010001
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of the minimum contrast estimator is proved. In particular, the rate of convergence for the minimum contrast estimator of diffusion coefficient parameter in a misspecified model is different from the one in the correctly specified parametric model.