ESTIMATION FOR MISSPECIFIED ERGODIC DIFFUSION PROCESSES FROM DISCRETE OBSERVATIONS

被引:18
作者
Uchida, Masayuki [1 ,2 ]
Yoshida, Nakahiro [3 ]
机构
[1] Osaka Univ Toyonaka, Grad Sch Engn Sci, Osaka 5608531, Japan
[2] Japan Sci & Technol Agcy, CREST, Tokyo, Japan
[3] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
关键词
Diffusion process; misspecified model; discrete time observations; minimum contrast estimator; rate of convergence;
D O I
10.1051/ps/2010001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The joint estimation of both drift and diffusion coefficient parameters is treated under the situation where the data are discretely observed from an ergodic diffusion process and where the statistical model may or may not include the true diffusion process. We consider the minimum contrast estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast function based on a locally Gaussian approximation of the transition density. The asymptotic normality of the minimum contrast estimator is proved. In particular, the rate of convergence for the minimum contrast estimator of diffusion coefficient parameter in a misspecified model is different from the one in the correctly specified parametric model.
引用
收藏
页码:270 / 290
页数:21
相关论文
共 19 条
  • [1] [Anonymous], 2004, STAT INFERENCE ERGOD, DOI DOI 10.1007/978-1-4471-3866-2
  • [2] [Anonymous], 1989, Statistics, DOI DOI 10.1080/02331888908802205
  • [3] [Anonymous], ANN I STAT IN PRESS
  • [4] Bibby BM., 1995, Bernoulli, V1, P17, DOI [DOI 10.2307/3318679, 10.2307/3318679]
  • [5] GENONCATALOT V, 1993, ANN I H POINCARE-PR, V29, P119
  • [6] LAN property for ergodic diffusions with discrete observations
    Gobet, E
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (05): : 711 - 737
  • [7] Hall P., 1980, Martingale Limit Theory and Its Application
  • [8] Ibragimov IA, 1981, Statistical Estimation
  • [9] Estimation of an ergodic diffusion from discrete observations
    Kessler, M
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (02) : 211 - 229
  • [10] Malliavin calculus, geometric mixing, and expansion of diffusion functionals
    Kusuoka, S
    Yoshida, N
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (04) : 457 - 484