Entropy estimates of small data sets

被引:80
作者
Bonachela, Juan A. [1 ,2 ,3 ]
Hinrichsen, Haye [3 ]
Munoz, Miguel A. [1 ,2 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Electromagnet & Fis Mat, E-18071 Granada, Spain
[2] Univ Granada, Fac Ciencias, Inst Fis Teor & Computac Carlos 1, E-18071 Granada, Spain
[3] Univ Wurzburg, Fak Phys & Astron, D-97074 Wurzburg, Germany
关键词
D O I
10.1088/1751-8113/41/20/202001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Estimating entropies from limited data series is known to be a non- trivial task. Naive estimations are plagued with both systematic ( bias) and statistical errors. Here, we present a new 'balanced estimator' for entropy functionals ( Shannon, Renyi and Tsallis) specially devised to provide a compromise between low bias and small statistical errors, for short data series. This new estimator outperforms other currently available ones when the data sets are small and the probabilities of the possible outputs of the random variable are not close to zero. Otherwise, other well- known estimators remain a better choice. The potential range of applicability of this estimator is quite broad specially for biological and digital data series.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
[Anonymous], 2006, Elements of information theory
[2]  
[Anonymous], 1964, Handbook of mathematical functions
[3]  
[Anonymous], 1955, INFORM THEORY PSYCHO
[4]  
Basharin G. P., 1959, THEOR PROBAB APPL, V4, P333
[5]   Stochastic models of evolution in genetics, ecology and linguistics [J].
Blythe, R. A. ;
McKane, A. J. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
[6]  
BONACHELA JA, 2008, PREPRINT
[7]   When do finite sample effects significantly affect entropy estimates? [J].
de Wit, TD .
EUROPEAN PHYSICAL JOURNAL B, 1999, 11 (03) :513-516
[8]  
Ebeling W., 1992, Chaos, Solitons and Fractals, V2, P635, DOI 10.1016/0960-0779(92)90058-U
[9]   FINITE-SAMPLE CORRECTIONS TO ENTROPY AND DIMENSION ESTIMATES [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1988, 128 (6-7) :369-373
[10]  
GRASSBERGER P, 2003, CONDMATH0307138