Computer Aided Diagnosis system for Alzheimer Disease using brain Diffusion Tensor Imaging features selected by Pearson's correlation

被引:99
作者
Grana, M. [1 ]
Termenon, M. [1 ]
Savio, A. [1 ]
Gonzalez-Pinto, A. [2 ]
Echeveste, J. [3 ]
Perez, J. M. [4 ]
Besga, A. [2 ]
机构
[1] Univ Basque Country, Grp Inteligencia Computac, Bilbao, Spain
[2] Hosp Santiago Apostol, Unidad Invest Psiquiatria, Vitoria, Spain
[3] Dept Resonancia Magnet, Osatek Vitoria, Spain
[4] Hosp Santiago Apostol, Serv Neurol, Vitoria, Spain
关键词
Alzheimer's Disease; Diffusion Tensor Imaging (DTI); Image registration; Mean Diffusivity; Fractional Anisotropy; Feature selection; Classification; Support vector machines; MILD COGNITIVE IMPAIRMENT; SUPPORT VECTOR MACHINES; IMAGES; MRI;
D O I
10.1016/j.neulet.2011.07.049
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The aim of this paper is to obtain discriminant features from two scalar measures of Diffusion Tensor Imaging (DTI) data, Fractional Anisotropy (FA) and Mean Diffusivity (MD), and to train and test classifiers able to discriminate Alzheimer's Disease (AD) patients from controls on the basis of features extracted from the FA or MD volumes. In this study, support vector machine (SVM) classifier was trained and tested on FA and MD data. Feature selection is done computing the Pearson's correlation between FA or MD values at voxel site across subjects and the indicative variable specifying the subject class. Voxel sites with high absolute correlation are selected for feature extraction. Results are obtained over an on-going study in Hospital de Santiago Apostol collecting anatomical T1-weighted MRI volumes and DTI data from healthy control subjects and AD patients. FA features and a linear SVM classifier achieve perfect accuracy, sensitivity and specificity in several cross-validation studies, supporting the usefulness of DTI-derived features as an image-marker for AD and to the feasibility of building Computer Aided Diagnosis systems for AD based on them. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:225 / 229
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 2011, ALZHEIMERS DEMENTIA, V7, P208
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   MR DIFFUSION TENSOR SPECTROSCOPY AND IMAGING [J].
BASSER, PJ ;
MATTIELLO, J ;
LEBIHAN, D .
BIOPHYSICAL JOURNAL, 1994, 66 (01) :259-267
[4]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[5]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[6]   A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer's disease [J].
Busatto, GF ;
Garrido, GEJ ;
Almeida, OP ;
Castro, CC ;
Camargo, CHP ;
Cid, CG ;
Buchpiguel, CA ;
Furuie, S ;
Bottino, CM .
NEUROBIOLOGY OF AGING, 2003, 24 (02) :221-231
[7]   SVM-based computer-aided diagnosis of the Alzheimer's disease using t-test NMSE feature selection with feature correlation weighting [J].
Chaves, R. ;
Ramirez, J. ;
Gorriz, J. M. ;
Lopez, M. ;
Salas-Gonzalez, D. ;
Alvarez, I. ;
Segovia, F. .
NEUROSCIENCE LETTERS, 2009, 461 (03) :293-297
[8]   DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease [J].
Douaud, Gwenaelle ;
Jbabdi, Saad ;
Behrens, Timothy E. J. ;
Menke, Ricarda A. ;
Gass, Achim ;
Monsch, Andreas U. ;
Rao, Anil ;
Whitcher, Brandon ;
Kindlmann, Gordon ;
Matthews, Paul M. ;
Smith, Stephen .
NEUROIMAGE, 2011, 55 (03) :880-890
[9]   Voxel-based assessment of gray and white matter volumes in Alzheimer's disease [J].
Guo, Xiaojuan ;
Wang, Zhiqun ;
Li, Kuncheng ;
Li, Ziyi ;
Qi, Zhigang ;
Jin, Zhen ;
Yao, Li ;
Chen, Kewei .
NEUROSCIENCE LETTERS, 2010, 468 (02) :146-150
[10]   SVM-based CAD system for early detection of the Alzheimer's disease using kernel PCA and LDA [J].
Lopez, M. M. ;
Ramirez, J. ;
Gorriz, J. M. ;
Alvarez, I. ;
Salas-Gonzalez, D. ;
Segovia, F. ;
Chaves, R. .
NEUROSCIENCE LETTERS, 2009, 464 (03) :233-238