Multimetric supergravities

被引:11
作者
Del Monte, F. [1 ]
Francia, D. [2 ,3 ]
Grassi, P. A. [4 ,5 ]
机构
[1] Univ Pisa, Dipartimento Fis, Largo Bruno Pontecorvo 3, I-56126 Pisa, Italy
[2] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[3] Ist Nazl Fis Nucl, Piazza Cavalieri 7, I-56126 Pisa, Italy
[4] Univ Piemonte Orientale, DISIT, Via T Michel 11, I-15120 Alessandria, Italy
[5] Ist Nazl Fis Nucl, Sez Torino, Turin, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2016年 / 09期
关键词
Classical Theories of Gravity; Supergravity Models; Superspaces; Supersymmetric gauge theory; MASSIVE SUPERGRAVITY; IIA SUPERGRAVITY; RHAM COHOMOLOGY; SUPERMANIFOLDS; GRAVITY;
D O I
10.1007/JHEP09(2016)064
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Making use of integral forms and super field techniques we propose supersymmetric extensions of the multimetric gravity Lagrangians in dimensions one, two, three and four. The supersymmetric interaction potential covariantly deforms the bosonic one, producing in particular suitable super-symmetric polynomials generated by the Berezinian. As an additional application of our formalism we construct supersymmetric multi-Maxwell theories in dimensions three and four.
引用
收藏
页数:28
相关论文
共 55 条
[1]   Interacting spin-2 fields in three dimensions [J].
Afshar, Hamid R. ;
Bergshoeff, Eric A. ;
Merbis, Wout .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (01)
[2]   Massive 3D supergravity [J].
Andringa, Roel ;
Bergshoeff, Eric A. ;
de Roo, Mees ;
Hohm, Olaf ;
Sezgin, Ergin ;
Townsend, Paul K. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (02)
[3]  
[Anonymous], ARXIV12092199
[4]  
[Anonymous], ARXIV12095461
[5]   M-theory on Spin(7) manifolds, fluxes and 3D, N=1 supergravity [J].
Becker, M ;
Constantin, D ;
Gates, SJ ;
Linch, WD ;
Merrell, W ;
Phillips, J .
NUCLEAR PHYSICS B, 2004, 683 (1-2) :67-104
[6]   de Rham cohomology of the supermanifolds and superstring BRST cohomology [J].
Belopolsky, A .
PHYSICS LETTERS B, 1997, 403 (1-2) :47-50
[7]  
Belopolsky A., HEPTH9706033
[8]   More on massive 3D supergravity [J].
Bergshoeff, Eric A. ;
Hohm, Olaf ;
Rosseel, Jan ;
Sezgin, Ergin ;
Townsend, Paul K. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (01)
[9]   CAN GRAVITATION HAVE A FINITE-RANGE [J].
BOULWARE, DG ;
DESER, S .
PHYSICAL REVIEW D, 1972, 6 (12) :3368-3382
[10]  
Buchbinder I.L., 1995, Ideas and Methods of Supersymmetry and Supergravity, Or a Walk Through Superspace, V1998