Efficient Multi-Training Framework of Image Deep Learning on GPU Cluster

被引:5
作者
Chen, Chun-Fu [1 ,2 ]
Lee, Gwo Giun [1 ]
Xia, Yinglong [2 ]
Lin, W. Sabrina [2 ]
Suzumura, Toyotaro [2 ]
Lin, Ching-Yung [2 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] IBM TJ Watson Res Ctr Yorktown, Heights, NY 10598 USA
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2015年
关键词
deep learning; GPU cluster; software pipeline;
D O I
10.1109/ISM.2015.119
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we develop a pipelining schema for image deep learning on GPU cluster to leverage heavy workload of training procedure. In addition, it is usually necessary to train multiple models to obtain a good deep learning model due to the limited a priori knowledge on deep neural network structure. Therefore, adopting parallel and distributed computing appears is an obvious path forward, but the mileage varies depending on how amenable a deep network can be parallelized and the availability of rapid prototyping capabilities with low cost of entry. In this work, we propose a framework to organize the training procedures of multiple deep learning models into a pipeline on a GPU cluster, where each stage is handled by a particular GPU with a partition of the training dataset. Instead of frequently migrating data among the disks, CPUs, and GPUs, our framework only moves partially trained models to reduce bandwidth consumption and to leverage the full computation capability of the cluster. In this paper, we deploy the proposed framework on popular image recognition tasks using deep learning, and the experiments show that the proposed method reduces overall training time up to dozens of hours compared to the baseline method.
引用
收藏
页码:489 / 494
页数:6
相关论文
共 19 条
[1]  
[Anonymous], 2014, INT J COMPUT VISION
[2]  
[Anonymous], 2015, Deep image: Scaling up image recognition
[3]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[4]   Parallel Deep Neural Network Training for Big Data on Blue Gene/Q [J].
Chung, I-Hsin ;
Sainath, Tara N. ;
Ramabhadran, Bhuvana ;
Picheny, Michael ;
Gunnels, John ;
Austel, Vernon ;
Chauhari, Upendra ;
Kingsbury, Brian .
SC14: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2014, :745-753
[5]  
Dean J., 2012, Advances in Neural Information Processing Systems, P1223, DOI DOI 10.5555/2999134.2999271
[6]  
Domingos P., 2000, ICML, V747, P223
[7]  
Gabriel E, 2004, LECT NOTES COMPUT SC, V3241, P97
[8]  
Girshick R., 2015, ARXIV, DOI DOI 10.48550/ARXIV.1504.08083
[9]  
Graves A, 2013, INT CONF ACOUST SPEE, P6645, DOI 10.1109/ICASSP.2013.6638947
[10]  
HE K, 2015, ARXIV150201852