Extended feedback and simulation strategies for a delayed fractional-order control system

被引:4
|
作者
Huang, Chengdai [1 ]
Liu, Heng [2 ]
Chen, Xiaoping [3 ]
Cao, Jinde [4 ]
Alsaedi, Ahmed [5 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
[2] Guangxi Univ Nationalities, Sch Sci, Nanning 530006, Peoples R China
[3] Taizhou Univ, Dept Math, Taizhou 225300, Peoples R China
[4] Southeast Univ, Sch Math, Res Ctr Complex Syst & Network Sci, Nanjing 210096, Peoples R China
[5] King Abdulaziz Univ, Dept Math, NAAM Res Grp, Jeddah 21589, Saudi Arabia
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Extended delay feedback; Bifurcation control; Fractional-order; Predator-prey model; BIFURCATION-ANALYSIS; NEURAL-NETWORKS; STABILITY ANALYSIS; HOPF-BIFURCATION; TIME-DELAY; MODEL; SYNCHRONIZATION; DISCRETE; DISSIPATIVITY; DYNAMICS;
D O I
10.1016/j.physa.2019.123127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper showcases the bifurcation control of a delayed fractional predator-prey system via ingenious extended delayed feedback methodology. The gestation delay acts as a bifurcation parameter to decide the bifurcation point of the controlled system. Then it reflects that bifurcation occurs upon eliminating the devised controller. Besides, the impact of fractional orders, feedback gain and extended delay on the bifurcation point is exquisitely explored. It hints that bifurcation emergence can be efficaciously handicapped by modulating fractional order, feedback gain and extended feedback delay. The efficiency of the developed control scheme is neatly checked by simulations results. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Bifurcation for a fractional-order Lotka-Volterra predator-prey model with delay feedback control
    Li, Zhouhong
    Zhang, Wei
    Huang, Chengdai
    Zhou, Jianwen
    AIMS MATHEMATICS, 2021, 6 (01): : 675 - 687
  • [22] Bifurcation control of a delayed fractional-order prey-predator model with cannibalism and disease
    Li, Ning
    Yan, Mengting
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 600
  • [23] Bifurcation control for a fractional-order delayed SEIR rumor spreading model with incommensurate orders
    Ye, Maolin
    Jiang, Haijun
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (06) : 2662 - 2682
  • [24] Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system
    ChengDai Huang
    JinDe Cao
    Science China Technological Sciences, 2019, 62 : 298 - 307
  • [25] Comparative study on bifurcation control methods in a fractional-order delayed predator-prey system
    HUANG ChengDai
    CAO JinDe
    Science China(Technological Sciences), 2019, (02) : 298 - 307
  • [26] Stability and Bifurcation of Delayed Fractional-Order Dual Congestion Control Algorithms
    Xiao, Min
    Zheng, Wei Xing
    Jiang, Guoping
    Cao, Jinde
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (09) : 4819 - 4826
  • [27] Dynamical bifurcations in a delayed fractional-order neural network involving neutral terms
    Huang, Chengdai
    Fu, Lei
    Liu, Shuang
    Cao, Jinde
    Abdel-Aty, Mahmoud
    Liu, Heng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 2253 - 2266
  • [28] Dynamic complexity of a fractional-order predator-prey system with double delays
    Li, Huan
    Huang, Chengdai
    Li, Tongxing
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 526
  • [29] Order-Dependent Sampling Control of Uncertain Fractional-Order Neural Networks System
    Ge, Chao
    Zhang, Qi
    Zhang, Ruonan
    Yang, Li
    NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10773 - 10787
  • [30] Output-feedback-guaranteed cost control of fractional-order uncertain linear delayed systems
    Chen, Liping
    Li, Tingting
    Wu, Ranchao
    Lopes, Antonio M.
    Tenreiro Machado, J. A.
    Wu, Kehan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03)