Classification of Brainwaves for Sleep Stages by High-Dimensional FFT Features from EEG Signals

被引:39
作者
Delimayanti, Mera Kartika [1 ,2 ]
Purnama, Bedy [1 ,3 ]
Nguyen, Ngoc Giang [1 ]
Faisal, Mohammad Reza [4 ]
Mahmudah, Kunti Robiatul [1 ]
Indriani, Fatma [1 ]
Kubo, Mamoru [5 ]
Satou, Kenji [5 ]
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
[2] Politekn Negeri Jakarta, Dept Comp & Informat Engn, Depok 16425, Indonesia
[3] Telkom Univ, Telkom Comp, Bandung 40257, Indonesia
[4] Lambung Mangkurat Univ, Comp Sci, Banjarbaru 70714, Indonesia
[5] Kanazawa Univ, Inst Sci & Engn, Kanazawa, Ishikawa 9201192, Japan
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 05期
关键词
automatic sleep stage classification; electroencephalogram; fast Fourier transform; IDENTIFICATION; PATTERNS;
D O I
10.3390/app10051797
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2-6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.
引用
收藏
页数:12
相关论文
共 29 条
  • [1] Aboalayon KAI, 2014, 2014 IEEE HEALTHCARE INNOVATION CONFERENCE (HIC), P181, DOI 10.1109/HIC.2014.7038904
  • [2] Sleep Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and New Investigation
    Aboalayon, Khald Ali I.
    Faezipour, Miad
    Almuhammadi, Wafaa S.
    Moslehpour, Saeid
    [J]. ENTROPY, 2016, 18 (09)
  • [3] Identification of Electroencephalographic Arousals in Multichannel Sleep Recordings
    Alvarez-Estevez, D.
    Moret-Bonillo, V.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (01) : 54 - 63
  • [4] [Anonymous], 2007, AASM MANUAL SCORING
  • [5] [Anonymous], 2014, INT SCHOLARLY RES NO, DOI DOI 10.1155/2014/730218
  • [6] Billiard M., 2012, SLEEP MED
  • [7] Braun E.T., 2018, REV INFORM TEORICA A, V25, P11, DOI DOI 10.22456/2175-2745.74030
  • [8] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)
  • [9] SPATIAL EEG PATTERNS, NONLINEAR DYNAMICS AND PERCEPTION - THE NEO-SHERRINGTONIAN VIEW
    FREEMAN, WJ
    SKARDA, CA
    [J]. BRAIN RESEARCH REVIEWS, 1985, 10 (03) : 147 - 175
  • [10] GOTO Y, 2018, BULL HERPETOL SOC JP, P149