Enhancing Optimized Personalized Therapy in Clinical Decision Support System using Natural Language Processing

被引:20
作者
Hiremath, Basavaraj N. [1 ]
Patil, Malini M. [1 ,2 ,3 ]
机构
[1] JSS Acad Tech Educ, Dept Comp Sci & Engn, Bengaluru 560060, Karnataka, India
[2] JSS Acad Tech Educ, Dept Informat Sci & Engn, Bengaluru 560060, Karnataka, India
[3] Visvesvaraya Technol Univ, Belagav 590018, Karnataka, India
关键词
Polarity; Tokenizer; Sentiment score; Sentiment label; Classification; Natural language processing; SENTIMENT ANALYSIS;
D O I
10.1016/j.jksuci.2020.03.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sentiment analysis is the process of identifying and categorising the opinions expressed by human utterances through computational techniques using natural language processing. The present work focuses on a case study to develop a clinical decision support system for personalized therapy process using aspect-based sentiment analysis. The process is carried out on a drug review data in order to determine whether the patient's behaviour towards a medicine, product, treatment etc is positive, negative or neutral using NLP techniques. The polarities obtained are compared for further analysis of the patient reviews for the better clinical decision system. Machine learning methods are also used for classification of the drug review data to compare the sentiment scores. The prominent statistical sklearn models used are support vector machines (SVM), Random Forest Classification, LinearSVC, MultinomialNB. SVM algorithm is found to perform better compared to other in terms of accuracy. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University.
引用
收藏
页码:2840 / 2848
页数:9
相关论文
共 50 条
[41]   Natural language processing in radiology: Clinical applications and future directions [J].
Bobba, Pratheek S. ;
Sailer, Anne ;
Pruneski, James A. ;
Beck, Spencer ;
Mozayan, Ali ;
Mozayan, Sara ;
Arango, Jennifer ;
Cohan, Arman ;
Chheang, Sophie .
CLINICAL IMAGING, 2023, 97 :55-61
[42]   Extracting cancer concepts from clinical notes using natural language processing: a systematic review [J].
Gholipour, Maryam ;
Khajouei, Reza ;
Amiri, Parastoo ;
Gohari, Sadrieh Hajesmaeel ;
Ahmadian, Leila .
BMC BIOINFORMATICS, 2023, 24 (01)
[43]   Using natural language processing to extract mammographic findings [J].
Gao, Hongyuan ;
Bowles, Erin J. Aiello ;
Carrell, David ;
Buist, Diana S. M. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2015, 54 :77-84
[44]   Personalized Feedback Enhanced by Natural Language Processing in Intelligent Tutoring Systems [J].
Troussas, Christos ;
Papakostas, Christos ;
Krouska, Akrivi ;
Mylonas, Phivos ;
Sgouropoulou, Cleo .
AUGMENTED INTELLIGENCE AND INTELLIGENT TUTORING SYSTEMS, ITS 2023, 2023, 13891 :667-677
[45]   Automated Research Review Support Using Machine Learning, Large Language Models, and Natural Language Processing [J].
Pendyala, Vishnu S. ;
Kamdar, Karnavee ;
Mulchandani, Kapil .
ELECTRONICS, 2025, 14 (02)
[46]   System for Monitoring Natural Disasters using Natural Language Processing in the Social Network Twitter [J].
Maldonado, Miguel ;
Alulema, Darwin ;
Morocho, Derlin ;
Proano, Mariela .
2016 IEEE INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY (ICCST), 2016, :79-84
[47]   Natural Language Processing using Kepler Workflow System: First Steps [J].
Goyal, Ankit ;
Singh, Alok ;
Bhargava, Shitij ;
Crawl, Daniel ;
Altintas, Ilkay ;
Hsu, Chun-Nan .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE 2016 (ICCS 2016), 2016, 80 :712-721
[48]   IQS- Intelligent Querying System using Natural Language Processing [J].
Gupta, Prashant ;
Goswami, Aman ;
Koul, Sahil ;
Sartape, Kashinath .
2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, :410-413
[49]   Enhancing information systems management with natural language processing techniques [J].
Métais, E .
DATA & KNOWLEDGE ENGINEERING, 2002, 41 (2-3) :247-272
[50]   Identifying stigmatizing and positive/preferred language in obstetric clinical notes using natural language processing [J].
Scroggins, Jihye Kim ;
Hulchafo, Ismael I. ;
Harkins, Sarah ;
Scharp, Danielle ;
Moen, Hans ;
Davoudi, Anahita ;
Cato, Kenrick ;
Tadiello, Michele ;
Topaz, Maxim ;
Barcelona, Veronica .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 32 (02) :308-317