Cyanide produced by human isolates of Pseudomonas aeruginosa contributes to lethality in Drosophila melanogaster

被引:38
作者
Broderick, Kate E. [1 ]
Chan, Adriano [1 ]
Balasubramanian, Maheswari [1 ]
Feala, Jake [2 ]
Reed, Sharon L. [3 ]
Panda, Markandeswar [5 ]
Sharma, Vijay S. [1 ]
Pilz, Renate B. [1 ]
Bigby, Timothy D. [1 ,4 ]
Boss, Gerry R. [1 ]
机构
[1] Univ Calif San Diego, Dept Med, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Bioengn, San Diego, CA 92103 USA
[3] Univ Calif San Diego, Dept Pathol, San Diego, CA 92103 USA
[4] Vet Affairs San Diego Healthcare Syst, La Jolla, CA USA
[5] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA
关键词
D O I
10.1086/525282
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Some Pseudomonas aeruginosa strains are cyanogenic, and cyanide may contribute to the bacterium's virulence. Using human isolates of P. aeruginosa, we have shown that Drosophila melanogaster suspended above cyanogenic strains become motionless and develop bradycardia and that flies injected with cyanogenic bacterial strains die more rapidly than those injected with noncyanogenic strains. Flies exposed to cyanogenic strains had high cyanide and low adenosine triphosphate (ATP) concentrations in body extracts, and treatment with a cyanide antidote equalized survival of flies injected with cyanogenic and noncyanogenic strains. P. aeruginosa PAO1 strain with a mutation in the hydrogen cyanide synthase gene cluster was much less toxic to flies than the parental cyanogenic strain or 2 knock-in strains. Transgenic flies overexpressing rhodanese, which detoxifies cyanide by converting it to thiocyanate, were resistant to cyanide and the increased virulence of cyanogenic strains. We conclude that D. melanogaster is a good model for studying cyanide produced by P. aeruginosa.
引用
收藏
页码:457 / 464
页数:8
相关论文
共 34 条
[1]   An automatic beat detection algorithm for pressure signals [J].
Aboy, M ;
McNames, J ;
Thong, T ;
Tsunami, D ;
Ellenby, MS ;
Goldstein, B .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (10) :1662-1670
[2]  
Alcorta R., 2004, JEMS S, V29, P16
[3]   Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis [J].
Blumer, C ;
Haas, D .
ARCHIVES OF MICROBIOLOGY, 2000, 173 (03) :170-177
[4]   DETERMINATION OF THIOCYANATE IN BODY FLUIDS [J].
BOXER, GE ;
RICKARDS, JC .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1952, 39 (02) :292-300
[5]   The nitric oxide scavenger cobinamide profoundly improves survival in a Drosophila melanogaster model of bacterial sepsis [J].
Broderick, Kate E. ;
Feala, Jake ;
McCulloch, Andrew ;
Paternostro, Giovanni ;
Sharma, Vijay S. ;
Pilz, Renate B. ;
Boss, Gerry R. .
FASEB JOURNAL, 2006, 20 (11) :1865-1873
[6]  
Broderick KE, 2006, EXP BIOL MED, V231, P641
[7]   Nitric oxide scavenging by the cobalamin precursor cobinamide [J].
Broderick, KE ;
Singh, V ;
Zhuang, SH ;
Kambo, A ;
Chen, JC ;
Sharma, VS ;
Pilz, RB ;
Boss, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (10) :8678-8685
[8]   Detection of volatile compounds emitted by Pseudomonas aeruginosa using selected ion flow tube mass spectrometry [J].
Carroll, W ;
Lenney, W ;
Wang, TS ;
Spanel, P ;
Alcock, A ;
Smith, D .
PEDIATRIC PULMONOLOGY, 2005, 39 (05) :452-456
[9]   The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa [J].
Carterson, AJ ;
Morici, LA ;
Jackson, DW ;
Frisk, A ;
Lizewski, SE ;
Jupiter, R ;
Simpson, K ;
Kunz, DA ;
Davis, SH ;
Schurr, JR ;
Hassett, DJ ;
Schurr, MJ .
JOURNAL OF BACTERIOLOGY, 2004, 186 (20) :6837-6844
[10]   Characterization of a rhodanese from the cyanogenic bacterium Pseudomonas aeruginosa [J].
Cipollone, R ;
Bigotti, MG ;
Frangipani, E ;
Ascenzi, P ;
Visca, P .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2004, 325 (01) :85-90