The Role of Lipopolysaccharide on the Electrochemical Behavior of Titanium

被引:64
作者
Barao, V. A. [1 ,3 ]
Mathew, M. T. [2 ]
Assuncao, W. G. [3 ]
Yuan, J. C. [1 ]
Wimmer, M. A. [2 ]
Sukotjo, C. [1 ]
机构
[1] Univ Illinois, Coll Dent, Dept Restorat Dent, Chicago, IL 60612 USA
[2] Rush Univ, Med Ctr, Dept Orthoped Surg, Chicago, IL 60612 USA
[3] Univ Estadual Paulista, UNESP, Aracatuba Dent Sch, Dept Dent Mat & Prosthodont, BR-16015050 Sao Paulo, Brazil
关键词
titanium; corrosion; Escherichia coli; lipopolysaccharide; electrochemistry; CORROSION BEHAVIOR; DENTAL IMPLANTS; PURE TITANIUM; FLUORIDE; ALLOYS; PH;
D O I
10.1177/0022034510396880
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Lipopolysaccharide (LPS) may induce peri-implantitis and implant failure. However, the role of LPS in titanium (Ti) electrochemical behavior remains unknown. We hypothesized that LPS in saliva with different pHs affects Ti corrosion properties. Thirty-six Ti discs (15 mm x 3 mm) were divided into 12 groups according to saliva pH (3, 6.5, and 9) and Escherichia coli LPS concentration (0, 0.15, 15, and 150 mu g/mL). Electrochemical tests, such as open circuit potential, potentiodynamic, and electrochemical impedance spectroscopy, were conducted in a controlled environment. Data were evaluated by Pearson correlation and regression analysis (alpha = 0.05). LPS and pH affected Ti corrosive behavior. In general, lower pH and higher LPS concentration accelerated Ti corrosion. In the control group, the increase of pH significantly reduced the corrosion rate and increased the capacitance of the double layer. In LPS groups, the decrease of pH significantly increased the corrosion rate of Ti. LPS negatively influenced Ti corrosion behavior. Abbreviations: C-dl, capacitance of double layer; E-corr, corrosion potential; EIS, electrochemical impedance spectroscopy; I-corr, corrosion current density; I-pass, passivation current density; LPS, lipopolysaccharide; OCP, open circuit potential; R-p, polarization resistance; Ti, titanium.
引用
收藏
页码:613 / 618
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2006, ELECTROCHIM ACTA, DOI [DOI 10.1016/j.electacta.2005.02.121, DOI 10.1016/J.ELECTACTA.2005.02.121]
[2]  
BUNDY KJ, 1994, CRIT REV BIOMED ENG, V22, P139
[3]   Biocorrosion and uptake of titanium by human osteoclasts [J].
Cadosch, Dieter ;
Al-Mushaiqri, Mohamed S. ;
Gautschi, Oliver P. ;
Meagher, James ;
Simmen, Hans-Peter ;
Filgueira, Luis .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 95A (04) :1004-1010
[4]   Levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, inflammatory cytokines and species-specific immunoglobulin G in generalized aggressive and chronic periodontitis [J].
Casarin, R. C. V. ;
Del Peloso Ribeiro, E. ;
Mariano, F. S. ;
Nociti, F. H., Jr. ;
Casati, M. Z. ;
Goncalves, R. B. .
JOURNAL OF PERIODONTAL RESEARCH, 2010, 45 (05) :635-642
[5]  
Chaturvedi T P, 2009, Indian J Dent Res, V20, P91
[6]   Fatigue and Fluoride Corrosion on Streptococcus mutans Adherence to Titanium-Based Implant/Component Surfaces [J].
Correa, Cassia Bellotto ;
Pires, Juliana Rico ;
Fernandes-Filho, Romeu Belon ;
Sartori, Rafael ;
Vaz, Luis Geraldo .
JOURNAL OF PROSTHODONTICS-IMPLANT ESTHETIC AND RECONSTRUCTIVE DENTISTRY, 2009, 18 (05) :382-387
[7]   Galvanic corrosion behavior of titanium implants coupled to dental alloys [J].
Cortada, M ;
Giner, LL ;
Costa, S ;
Gil, FJ ;
Rodríguez, D ;
Planell, JA .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2000, 11 (05) :287-293
[8]   In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants [J].
Fathi, MH ;
Salehi, M ;
Saatchi, A ;
Mortazavi, V ;
Moosavi, SB .
DENTAL MATERIALS, 2003, 19 (03) :188-198
[9]   In Vitro Evaluation of the Effects of Low-Intensity Nd:YAG Laser Irradiation on the Inflammatory Reaction Elicited by Bacterial Lipopolysaccharide Adherent to Titanium Dental Implants [J].
Giannelli, Marco ;
Bani, Daniele ;
Tani, Alessia ;
Pini, Alessandro ;
Margheri, Martina ;
Zecchi-Orlandini, Sandra ;
Tonelli, Paolo ;
Formigli, Lucia .
JOURNAL OF PERIODONTOLOGY, 2009, 80 (06) :977-984
[10]   Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression [J].
Hsu, HY ;
Wen, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (25) :22131-22139