STEP: Spatio-Temporal Progressive Learning for Video Action Detection

被引:107
作者
Yang, Xitong [1 ,4 ]
Yang, Xiaodong [2 ]
Liu, Ming-Yu [2 ]
Xiao, Fanyi [3 ,4 ]
Davis, Larry [1 ]
Kautz, Jan [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] NVIDIA, Santa Clara, CA USA
[3] Univ Calif Davis, Davis, CA 95616 USA
[4] NVIDIA Res, Santa Clara, CA USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.00035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose Spatio-TEmporal Progressive (STEP) action detector-a progressive learning framework for spatio-temporal action detection in videos. Starting from a handful of coarse-scale proposal cuboids, our approach progressively refines the proposals towards actions over a few steps. In this way, high-quality proposals (i.e., adhere to action movements) can be gradually obtained at later steps by leveraging the regression outputs from previous steps. At each step, we adaptively extend the proposals in time to incorporate more related temporal context. Compared to the prior work that performs action detection in one run, our progressive learning framework is able to naturally handle the spatial displacement within action tubes and therefore provides a more effective way for spatio-temporal modeling. We extensively evaluate our approach on UCF101 and AVA, and demonstrate superior detection results. Remarkably, we achieve mAP of 75.0% and 18.6% on the two datasets with 3 progressive steps and using respectively only 11 and 34 initial proposals.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2015, CVPR
[2]  
[Anonymous], 2016, CVPR
[3]   High accuracy optical flow estimation based on a theory for warping [J].
Brox, T ;
Bruhn, A ;
Papenberg, N ;
Weickert, J .
COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 :25-36
[4]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[5]   Human Pose Estimation with Iterative Error Feedback [J].
Carreira, Joao ;
Agrawal, Pulkit ;
Fragkiadaki, Katerina ;
Malik, Jitendra .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :4733-4742
[6]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[7]  
Gidaris Spyros, ICCV
[8]  
Girshick R., 2015, P IEEE INT C COMPUTE, DOI [DOI 10.1109/ICCV.2015.169, 10.1109/ICCV.2015.169]
[9]  
Girshick R., 2014, IEEE COMP SOC C COMP, DOI [10.1109/CVPR.2014.81, DOI 10.1109/CVPR.2014.81]
[10]  
Gkioxari G, 2015, PROC CVPR IEEE, P759, DOI 10.1109/CVPR.2015.7298676