Multiple-relaxation-time lattice Boltzmann model for anisotropic liquid-solid phase change

被引:3
作者
Xu, Xingchun [1 ]
He, Yurong [2 ]
Han, Jiecai [1 ]
Zhu, Jiaqi [1 ,3 ]
机构
[1] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin 150001, Peoples R China
[3] Minist Educ, Key Lab Micro Syst & Micro Struct Mfg, Harbin 150080, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Lattice Boltzmann method; Phase -field equation; Anisotropic; Solidification; DENDRITIC GROWTH; CRYSTAL-GROWTH; FIELD; SIMULATIONS; SCHEME;
D O I
10.1016/j.aml.2022.108358
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended lattice Boltzmann model is proposed for the anisotropic solidification process based on the quantitative phase-field equation. To include the anisotropy, we derive an equivalent diffusion matrix and design an off-diagonal relaxation -time matrix to recover it within the framework of the lattice Boltzmann method. Different from the standard collision-streaming algorithm, a correction step after the streaming step is introduced, which improves the model's locality. Numerical tests are conducted for the equiaxed dendrite growth in both two and three dimensions. Results obtained by the present lattice Boltzmann model have a good agreement with analytical solution and numerical prediction in literature. Furthermore, the present model shows superiority in efficiency especially for the large-scale modeling in the parallel machines. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 18 条
[1]   Lattice Boltzmann simulations of 3D crystal growth: Numerical schemes for a phase-field model with anti-trapping current [J].
Cartalade, Alain ;
Younsi, Amina ;
Plapp, Mathis .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (09) :1784-1798
[2]   Adaptive phase field simulation of dendritic crystal growth in a forced flow: 2D vs 3D morphologies [J].
Chen, C. C. ;
Tsai, Y. L. ;
Lan, C. W. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (5-6) :1158-1166
[3]   An implicit parallel multigrid computing scheme to solve coupled thermal-solute phase-field equations for dendrite evolution [J].
Guo, Z. ;
Mi, J. ;
Grant, P. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (04) :1781-1796
[4]   Phase field model for three-dimensional dendritic growth with fluid flow [J].
Jeong, JH ;
Goldenfeld, N ;
Dantzig, JA .
PHYSICAL REVIEW E, 2001, 64 (04) :14
[5]   Quantitative phase-field modeling of dendritic growth in two and three dimensions [J].
Karma, A ;
Rappel, WJ .
PHYSICAL REVIEW E, 1998, 57 (04) :4323-4349
[6]   Lattice Boltzmann scheme for crystal growth in external flows [J].
Medvedev, D ;
Kassner, K .
PHYSICAL REVIEW E, 2005, 72 (05)
[7]   International Conference on Computational Science, ICCS 2013 Simulating mobile dendrites in a flow [J].
Medvedev, Dmitry ;
Varnik, Fathollah ;
Steinbach, Ingo .
2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 :2512-2520
[8]   Lattice Boltzmann model for anisotropic liquid-solid phase transition [J].
Miller, W ;
Succi, S ;
Mansutti, D .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3578-3581
[9]   Permeability tensor for columnar dendritic structures: Phase-field and lattice Boltzmann study [J].
Mitsuyama, Yasumasa ;
Takaki, Tomohiro ;
Sakane, Shinji ;
Shibuta, Yasushi ;
Ohno, Munekazu .
ACTA MATERIALIA, 2020, 188 :282-287
[10]   Phase-field lattice kinetic scheme for the numerical simulation of dendritic growth [J].
Rasin, I ;
Miller, W ;
Succi, S .
PHYSICAL REVIEW E, 2005, 72 (06)