Impact of Climate Change on the Hydrology of the Forested Watershed That Drains to Lake Erken in Sweden: An Analysis Using SWAT+ and CMIP6 Scenarios

被引:21
|
作者
Jimenez-Navarro, Inmaculada C. [1 ]
Jimeno-Saez, Patricia [1 ]
Lopez-Ballesteros, Adrian [1 ]
Perez-Sanchez, Julio [2 ]
Senent-Aparicio, Javier [1 ]
机构
[1] Catholic Univ San Antonio, Dept Civil Engn, Campus Jeronimos S-N, Guadalupe 30107, Spain
[2] Univ Las Palmas Gran Canaria, Dept Civil Engn, Campus Tafira, Las Palmas Gran Canaria 35017, Spain
来源
FORESTS | 2021年 / 12卷 / 12期
基金
欧盟地平线“2020”;
关键词
SWAT model; hydrological modelling; hydrological cycle; water balance alterations; RIVER-BASIN; LAND-USE; MODEL; SENSITIVITY; INDICATORS; STREAMFLOW; RESOURCES; TRENDS; FLOWS; PLUS;
D O I
10.3390/f12121803
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Precipitation and temperature around the world are expected to be altered by climate change. This will cause regional alterations to the hydrological cycle. For proper water management, anticipating these changes is necessary. In this study, the basin of Lake Erken (Sweden) was simulated with the recently released software SWAT+ to study such alterations in a short (2026-2050), medium (2051-2075) and long (2076-2100) period, under two different climate change scenarios (SSP2-45 and SSP5-85). Seven global climate models from the latest projections of future climates that are available (CIMP 6) were compared and ensembled. A bias-correction of the models' data was performed with five different methods to select the most appropriate one. Results showed that the temperature is expected to increase in the future from 2 to 4 degrees C, and precipitation from 6% to 20%, depending on the scenario. As a result, water discharge would also increase by about 18% in the best-case scenario and by 50% in the worst-case scenario, and the surface runoff would increase between 5% and 30%. The floods and torrential precipitations would also increase in the basin. This trend could lead to soil impoverishment and reduced water availability in the basin, which could damage the watershed's forests. In addition, rising temperatures would result in a 65% reduction in the snow water equivalent at best and 92% at worst.
引用
收藏
页数:21
相关论文
共 37 条
  • [1] Modeling the Impact of Climate Change on Streamflow in the Meghna River Basin: An Analysis Using SWAT and CMIP6 Scenarios
    Mamoon, Wasif Bin
    Jahan, Nasreen
    Abdullah, Faruque
    Rahman, Ataur
    WATER, 2024, 16 (08)
  • [2] Assessing the impact of climate change on streamflow in the Tamor River Basin, Nepal: an analysis using SWAT and CMIP6 scenarios
    Suresh Raj Subedi
    Manoj Lamichhane
    Susan Dhungana
    Bibek Chalise
    Shishir Bhattarai
    Upendra Chaulagain
    Rakesh Khatiwada
    Discover Civil Engineering, 1 (1):
  • [3] Analysis of climate change scenarios using CMIP6 models in Pernambuco, Brazil
    Araujo, Diego Cezar dos Santos
    Montenegro, Suzana Maria Gico Lima
    da Silva, Samara Fernanda
    de Farias, Vanine Elane Menezes
    Rodrigues, Arivania Bandeira
    REVISTA BRASILEIRA DE CIENCIAS AMBIENTAIS, 2024, 59
  • [4] Analysis of climate change scenarios using CMIP6 models in Pernambuco, Brazil
    Araujo, Diego Cezar dos Santos
    Montenegro, Suzana Maria Gico Lima
    da Silva, Samara Fernanda
    de Farias, Vanine Elane Menezes
    Rodrigues, Arivania Bandeira
    REVISTA BRASILEIRA DE CIENCIAS AMBIENTAIS, 2024, 59
  • [5] Investigating Impacts of Climate Change on Runoff from the Qinhuai River by Using the SWAT Model and CMIP6 Scenarios
    Sun, Jinqiu
    Yan, Haofang
    Bao, Zhenxin
    Wang, Guoqing
    WATER, 2022, 14 (11)
  • [6] Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia
    Rendana, Muhammad
    Idris, Wan Mohd Razi
    Rahim, Sahibin Abdul
    Rahman, Zulfahmi Ali
    Lihan, Tukimat
    GEOSCIENCE LETTERS, 2023, 10 (01)
  • [7] Predicting soil erosion potential under CMIP6 climate change scenarios in the Chini Lake Basin, Malaysia
    Muhammad Rendana
    Wan Mohd Razi Idris
    Sahibin Abdul Rahim
    Zulfahmi Ali Rahman
    Tukimat Lihan
    Geoscience Letters, 10
  • [8] Synergistic impact of climate and land use land cover change dynamics on the hydrological regime of Loktak Lake catchment under CMIP6 scenarios
    Anand, Vicky
    Oinam, Bakimchandra
    Wieprecht, Silke
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 53
  • [9] A CMIP6 multi-model based analysis of potential climate change effects on watershed runoff using SWAT model: A case study of kunhar river basin, Pakistan
    Waheed, Abdul
    Jamal, Muhammad Hidayat
    Javed, Muhammad Faisal
    Muhammad, Khairul Idlan
    HELIYON, 2024, 10 (08)
  • [10] Projecting Hydrological Responses to Climate Change Using CMIP6 Climate Scenarios for the Upper Huai River Basin, China
    Bian, Guodong
    Zhang, Jianyun
    Chen, Jie
    Song, Mingming
    He, Ruimin
    Liu, Cuishan
    Liu, Yanli
    Bao, Zhenxin
    Lin, Qianguo
    Wang, Guoqing
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2021, 9