A Hybrid Approach Based on Decision Trees and Clustering for Breast Cancer Classification

被引:0
作者
Elouedi, Hind [1 ]
Meliani, Walid [1 ]
Elouedi, Zied [2 ]
Ben Amor, Nahla [2 ]
机构
[1] ISET Nabeul, ISET Rades, Nabeul, Tunisia
[2] Univ Tunis, ISG Tunis, LARODEC Lab Le Bardo, Tunis, Tunisia
来源
2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR) | 2014年
关键词
Classification; Decision trees; Clustering; Wisconsin Breast Cancer database; malignant cases;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper proposes a hybrid diagnosis approach of breast cancer based on decision trees and clustering. Our proposed approach does not only assume distinguishing malignant from benign cases, but also makes a refined treatment of these latter. Experimental study on Wisconsin Breast Cancer Database provides a thorough analysis of the induced results and shows that we can enhance the classification results by distinguishing different types of Breast Cancer using a clustering technique.
引用
收藏
页码:226 / 231
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 2015, United States Cancer Statistics: 1999-2012 Incidence and Mortality Web-based Report
[2]  
[Anonymous], 2012, INT J INF TECHNOL CO, DOI DOI 10.5121/IJITCS.2012.2103
[3]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[4]  
Daoudi R, 2013, COMM COM INF SC, V383, P273
[5]  
Fallahi A., 2011, Int J Adv Sci Technol, V34, P65
[6]  
FAYYAD UM, 1992, AAAI-92 PROCEEDINGS : TENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, P104
[7]  
Kharya Sh., 2012, INT J COMPUTER SCI E, V2
[8]  
MacQueen J., 1967, P 5 BERK S MATH STAT, V1, P281, DOI DOI 10.1007/S11665-016-2173-6
[9]  
Mangasarian OL, 1990, SIAM News
[10]  
Quinlan J. R., 1986, Machine Learning, V1, P81, DOI 10.1007/BF00116251