Classification of algebraic function fields with class number one

被引:4
作者
Mercuri, Pietro
Stirpe, Claudio
机构
关键词
Class numbers; Class field theory;
D O I
10.1016/j.jnt.2015.02.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that there are exactly eight function fields, up to isomorphism, over finite fields with class number one and positive genus. This classification was already suggested, although not completely proved, in a previous work about this topic (see Stirpe [7]). (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:365 / 374
页数:10
相关论文
共 7 条
[1]   Ray class fields of global function fields with many rational places [J].
Auer, R .
ACTA ARITHMETICA, 2000, 95 (02) :97-122
[2]   ALGEBRAIC FUNCTION FIELDS WITH SMALL CLASS NUMBER [J].
LEITZEL, JRC ;
MADAN, ML ;
QUEEN, CS .
JOURNAL OF NUMBER THEORY, 1975, 7 (01) :11-27
[3]  
Madan M., 1972, ACTA ARITH, V20, P423
[4]   Function fields of class number one [J].
Shen, Qibin ;
Shi, Shuhui .
JOURNAL OF NUMBER THEORY, 2015, 154 :375-379
[5]  
Stichtenoth H., 2008, ALGEBRAIC FUNCTION F
[6]   A counterexample to 'Algebraic function fields with small class number' [J].
Stirpe, Claudio .
JOURNAL OF NUMBER THEORY, 2014, 143 :402-404
[7]   An upper bound for the minimum genus of a curve without points of small degree [J].
Stirpe, Claudio .
ACTA ARITHMETICA, 2013, 160 (02) :115-128