D-Pruner: Filter-Based Pruning Method for Deep Convolutional Neural Network

被引:4
作者
Huynh, Loc N. [1 ]
Lee, Youngki [1 ]
Balan, Rajesh Krishna [1 ]
机构
[1] Singapore Management Univ, Singapore, Singapore
来源
PROCEEDINGS OF THE 2018 INTERNATIONAL WORKSHOP ON EMBEDDED AND MOBILE DEEP LEARNING (EMDL '18) | 2018年
关键词
Continuous Vision; Deep Learning; Compression;
D O I
10.1145/3212725.3212730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of augmented reality devices such as Google Glass and Microsoft Hololens has opened up a new class of vision sensing applications. Those applications often require the ability to continuously capture and analyze contextual information from video streams. They often adopt various deep learning algorithms such as convolutional neural networks (CNN) to achieve high recognition accuracy while facing severe challenges to run computationally intensive deep learning algorithms on resource-constrained mobile devices. In this paper, we propose and explore a new class of compression technique called D-Pruner to efficiently prune redundant parameters within a CNN model to run the model efficiently on mobile devices. D-Pruner removes redundancy by embedding a small additional network. This network evaluates the importance of filters and removes them during the fine-tuning phase to efficiently reduce the size of the model while maintaining the accuracy of the original model. We evaluated D-Pruner on various datasets such as CIFAR-10 and CIFAR-100 and showed that D-Pruner could reduce a significant amount of parameters up to 4.4 times on many existing models while maintaining accuracy drop less than 1%.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [41] Radar Emitter Identification Based on Deep Convolutional Neural Network
    Kong, Mingxin
    Zhang, Jing
    Liu, Weifeng
    Zhang, Guilin
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 309 - 314
  • [42] Human ear recognition based on deep convolutional neural network
    Tian Ying
    Wang Shining
    Li Wanxiang
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 1830 - 1835
  • [43] Working activity recognition approach based on 3D deep convolutional neural network
    Liu T.
    Lu Z.
    Sun Y.
    Liu F.
    He B.
    Zhong J.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2020, 26 (08): : 2143 - 2156
  • [44] Recognition of emotion in music based on deep convolutional neural network
    Sarkar, Rajib
    Choudhury, Sombuddha
    Dutta, Saikat
    Roy, Aneek
    Saha, Sanjoy Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (1-2) : 765 - 783
  • [45] Vehicle category recognition based on deep convolutional neural network
    Yuan G.-P.
    Tang Y.-P.
    Han W.-M.
    Chen Q.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2018, 52 (04): : 694 - 702
  • [46] Rocket Image Classification Based on Deep Convolutional Neural Network
    Zhang, Liang
    Chen, Zhenhua
    Wang, Jian
    Huang, Zhaodun
    2018 10TH INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS (ICCCAS 2018), 2018, : 383 - 386
  • [47] DETECTION OF CEREBRAL MICROBLEEDING BASED ON DEEP CONVOLUTIONAL NEURAL NETWORK
    Lu, Siyuan
    Lu, Zhihai
    Hou, Xiaoxia
    Cheng, Hong
    Wang, Shuihua
    2017 14TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2017, : 93 - 96
  • [48] Recognition of emotion in music based on deep convolutional neural network
    Rajib Sarkar
    Sombuddha Choudhury
    Saikat Dutta
    Aneek Roy
    Sanjoy Kumar Saha
    Multimedia Tools and Applications, 2020, 79 : 765 - 783
  • [49] Traffic Sign Recognition Based on Deep Convolutional Neural Network
    Yin, Shihao
    Deng, Jicai
    Zhang, Dawei
    Du, Jingyuan
    COMPUTER VISION, PT I, 2017, 771 : 685 - 695
  • [50] Image Classification And Recognition Based On The Deep Convolutional Neural Network
    Wang, Yuan-yuan
    Zhang, Long-jun
    Xiao, Yang
    Xu, Jing
    Zhang, You-jun
    PROCEEDINGS OF THE 2017 2ND JOINT INTERNATIONAL INFORMATION TECHNOLOGY, MECHANICAL AND ELECTRONIC ENGINEERING CONFERENCE (JIMEC 2017), 2017, 62 : 171 - 174