A cationic amphiphilic co-polymer as a carrier of nucleic acid nanoparticles (Nanps) for controlled gene silencing, immunostimulation, and biodistribution

被引:41
作者
Halman, Justin R. [1 ]
Kim, Ki-Taek [2 ]
Gwak, So-Jung [2 ]
Pace, Richard [2 ]
Johnson, M. Brittany [3 ]
Chandler, Morgan R. [1 ]
Rackley, Lauren [1 ]
Viard, Mathias [4 ]
Marriott, Ian [3 ]
Lee, Jeoung Soo [2 ]
Afonin, Kirill A. [1 ]
机构
[1] Univ North Carolina Charlotte, Dept Chem, Charlotte, NC 28223 USA
[2] Clemson Univ, Drug Design Dev & Delivery 4D Lab, Dept Bioengn, Clemson, SC 29634 USA
[3] Univ North Carolina Charlotte, Dept Biol Sci, 9201 Univ City Blvd, Charlotte, NC USA
[4] Leidos Biomed Res Inc, Frederick Natl Lab Canc Res, Canc & Inflammat Program, Frederick, MD USA
基金
美国国家卫生研究院;
关键词
nucleic acid nanoparticles; immunology; RNA interference; drug delivery; RNA NANOPARTICLES; EMERGING FIELD; NONVIRAL VECTORS; DRUG-DELIVERY; IN-VIVO; INTERFERENCE; ACTIVATION; THERAPY; DESIGN; CANCER;
D O I
10.1016/j.nano.2019.102094
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery. (c) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:12
相关论文
共 48 条
  • [1] Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis
    Adams, D.
    Gonzalez-Duarte, A.
    O'Riordan, W. D.
    Yang, C. -C.
    Ueda, M.
    Kristen, A. V.
    Tournev, I.
    Schmidt, H. H.
    Coelho, T.
    Berk, J. L.
    Lin, K. -P.
    Vita, G.
    Attarian, S.
    Plante-Bordeneuve, V.
    Mezei, M. M.
    Campistol, J. M.
    Buades, J.
    Brannagan, T. H., III
    Kim, B. J.
    Oh, J.
    Parman, Y.
    Sekijima, Y.
    Hawkins, P. N.
    Solomon, S. D.
    Polydefkis, M.
    Dyck, P. J.
    Gandhi, P. J.
    Goyal, S.
    Chen, J.
    Strahs, A. L.
    Nochur, S. V.
    Sweetser, M. T.
    Garg, P. P.
    Vaishnaw, A. K.
    Gollob, J. A.
    Suhr, O. B.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (01) : 11 - 21
  • [2] The Use of Minimal RNA Toeholds to Trigger the Activation of Multiple Functionalities
    Afonin, Kirill A.
    Viard, Mathias
    Tedbury, Philip
    Bindewald, Eckart
    Parlea, Lorena
    Howington, Marshall
    Valdman, Melissa
    Johns-Boehme, Alizah
    Brainerd, Cara
    Freed, Eric O.
    Shapiro, Bruce A.
    [J]. NANO LETTERS, 2016, 16 (03) : 1746 - 1753
  • [3] Triggering of RNA Interference with RNA-RNA, RNA-DNA, and DNA-RNA Nanoparticles
    Afonin, Kirill A.
    Viard, Mathias
    Kagiampakis, Ioannis
    Case, Christopher L.
    Dobrovolskaia, Marina A.
    Hofmann, Jen
    Vrzak, Ashlee
    Kireeva, Maria
    Kasprzak, Wojciech K.
    KewalRamani, Vineet N.
    Shapiro, Bruce A.
    [J]. ACS NANO, 2015, 9 (01) : 251 - 259
  • [4] Multifunctional RNA Nanoparticles
    Afonin, Kirill A.
    Viard, Mathias
    Koyfman, Alexey Y.
    Martins, Angelica N.
    Kasprzak, Wojciech K.
    Panigaj, Martin
    Desai, Ravi
    Santhanam, Arti
    Grabow, Wade W.
    Jaeger, Luc
    Heldman, Eliahu
    Reiser, Jakob
    Chiu, Wah
    Freed, Eric O.
    Shapiro, Bruce A.
    [J]. NANO LETTERS, 2014, 14 (10) : 5662 - 5671
  • [5] In Silico Design and Enzymatic Synthesis of Functional RNA Nanoparticles
    Afonin, Kirill A.
    Kasprzak, Wojciech K.
    Bindewald, Eckart
    Kireeva, Maria
    Viard, Mathias
    Kashlev, Mikhail
    Shapiro, Bruce A.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (06) : 1731 - 1741
  • [6] Computational and experimental characterization of RNA cubic nanoscaffolds
    Afonin, Kirill A.
    Kasprzak, Wojciech
    Bindewald, Eckart
    Puppala, Praneet S.
    Diehl, Alex R.
    Hall, Kenneth T.
    Kim, Tae Jin
    Zimmermann, Michael T.
    Jernigan, Robert L.
    Jaeger, Luc
    Shapiro, Bruce A.
    [J]. METHODS, 2014, 67 (02) : 256 - 265
  • [7] Afonin KA, 2013, NAT NANOTECHNOL, V8, P296, DOI [10.1038/nnano.2013.44, 10.1038/NNANO.2013.44]
  • [8] Co-transcriptional Assembly of Chemically Modified RNA Nanoparticles Functionalized with siRNAs
    Afonin, Kirill A.
    Kireeva, Maria
    Grabow, Wade W.
    Kashlev, Mikhail
    Jaeger, Luc
    Shapiro, Bruce A.
    [J]. NANO LETTERS, 2012, 12 (10) : 5192 - 5195
  • [9] Design and self-assembly of siRNA-functionalized RNA nanoparticles for use in automated nanomedicine
    Afonin, Kirill A.
    Grabow, Wade W.
    Walker, Faye M.
    Bindewald, Eckart
    Dobrovolskaia, Marina A.
    Shapiro, Bruce A.
    Jaeger, Luc
    [J]. NATURE PROTOCOLS, 2011, 6 (12) : 2022 - 2034
  • [10] Afonin KA, 2010, NAT NANOTECHNOL, V5, P676, DOI [10.1038/NNANO.2010.160, 10.1038/nnano.2010.160]