Legendre spectral Galerkin and multi-Galerkin methods for nonlinear Volterra integral equations of Hammerstein type

被引:4
作者
Mandal, Moumita [1 ]
Nelakanti, Gnaneshwar [2 ]
机构
[1] VIT Univ, Math Dept, SAS, Vellore, Tamil Nadu, India
[2] IIT Kharagpur, Math Dept, Kharagpur, W Bengal, India
关键词
Volterra-Hammerstein integral equations; Smooth kernels; Legendre polynomial; Galerkin method; Multi-Galerkin method; Superconvergence rates; 45B05; 45G10; 65R20; COLLOCATION-TYPE METHOD; NUMERICAL-SOLUTION; PROJECTION METHODS; SUPERCONVERGENCE;
D O I
10.1007/s41478-019-00170-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the superconvergence of the Galerkin solutions for second kind nonlinear integral equations of Volterra-Hammerstein type with a smooth kernel. Using Legendre polynomial bases, we obtain order of convergence O(n-r) for the Legendre Galerkin method in both L2-norm and infinity norm, where n is the highest degree of the Legendre polynomial employed in the approximation and r is the smoothness of the kernel. The iterated Legendre Galerkin solutions converge with the order O(n-2r), whose convergence order is the same as that of the multi-Galerkin solutions. We also prove that iterated Legendre multi-Galerkin method has order of convergence O(n-3r) in both L2-norm and infinity norm. Numerical examples are given to demonstrate the efficacy of Galerkin and multi-Galerkin methods.
引用
收藏
页码:323 / 349
页数:27
相关论文
共 25 条
[1]   IMPLICITLY LINEAR COLLOCATION METHODS FOR NONLINEAR VOLTERRA-EQUATIONS [J].
BRUNNER, H .
APPLIED NUMERICAL MATHEMATICS, 1992, 9 (3-5) :235-247
[2]  
Brunner H., 2004, COLLOCATION METHODS, DOI 10.1017/cbo9780511543234
[3]  
Brunner H., 1986, The Numerical Solution of Volterra Equations
[4]   APPLICATION OF INTEGRAL EQUATION METHODS TO NUMERICAL SOLUTION OF SOME EXTERIOR BOUNDARY-VALUE PROBLEMS [J].
BURTON, AJ ;
MILLER, GF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 323 (1553) :201-&
[5]  
Canuto C., 2006, SCIENTIF COMPUT
[6]   A fast multiscale solver for modified Hammerstein equations [J].
Chen, Zhongying ;
Li, Jianfei ;
Zhang, Yongdong .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (07) :3057-3067
[7]   Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations [J].
Das, Payel ;
Nelakanti, Gnaneshwar .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 56 (1-2) :1-24
[8]   Legendre Spectral Projection Methods for Fredholm-Hammerstein Integral Equations [J].
Das, Payel ;
Sahani, Mitali Madhumita ;
Nelakanti, Gnaneshwar ;
Long, Guangqing .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (01) :213-230
[9]   Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations [J].
Elnagar, GN ;
Kazemi, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 76 (1-2) :147-158
[10]   Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations [J].
Ghoreishi, F. ;
Hadizadeh, M. .
NUMERICAL ALGORITHMS, 2009, 52 (04) :541-559