Scattering below the ground state for the intercritical non-radial inhomogeneous NLS

被引:10
作者
Cardoso, Mykael [1 ]
Farah, Luiz Gustavo [2 ]
Guzman, Carlos M. [3 ]
Murphy, Jason [4 ]
机构
[1] Univ Fed Piaui, Dept Math, Teresina, Brazil
[2] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, Brazil
[3] Univ Fed Fluminense, Dept Math, Niteroi, Brazil
[4] Dept Math & Stat, Missouri S&T, Rolla, MO USA
关键词
Inhomogeneous NLS; Intercritical; Non-radial data; Scattering; GLOBAL WELL-POSEDNESS; BLOW-UP; SPACE;
D O I
10.1016/j.nonrwa.2022.103687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing inhomogeneous nonlinear Schrodinger equation i & part;(t)u+ ?u+ |x|(-b)|u|(alpha)u= 0 on R x R-N, with N >= 2, 0 < b < min{N/2 , 2}, and 4-2b/N < alpha < 4-2b/N-2 . These constraints make the equation mass-supercritical and energy-subcritical. We extend the results of Farah and Guzman (2020) and Miao et al. (2019) and prove scattering below the ground state with general initial data. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 32 条
[11]   Global well-posedness and blow-up on the energy space for the inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz G. .
JOURNAL OF EVOLUTION EQUATIONS, 2016, 16 (01) :193-208
[12]   Scattering for the Radial Focusing Inhomogeneous NLS Equation in Higher Dimensions [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02) :449-512
[13]   Scattering for the radial 3D cubic focusing inhomogeneous nonlinear Schrodinger equation [J].
Farah, Luiz Gustavo ;
Guzman, Carlos M. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (08) :4175-4231
[14]   Inhomogeneous Strichartz estimates [J].
Foschi, D .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) :1-24
[15]  
Genoud F, 2008, DISCRETE CONT DYN-A, V21, P137
[16]   Global Behavior of Finite Energy Solutions to the d-Dimensional Focusing Nonlinear Schrodinger Equation [J].
Guevara, Cristi Darley .
APPLIED MATHEMATICS RESEARCH EXPRESS, 2014, 2014 (02) :177-243
[17]   On well posedness for the inhomogeneous nonlinear Schrodinger equation [J].
Guzman, Carlos M. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 37 :249-286
[18]   A sharp condition for scattering of the radial 3D cubic nonlinear Schrodinger equation [J].
Holmer, Justin ;
Roudenko, Svetlana .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) :435-467
[19]  
KATO T, 1994, ADV STUD PURE MATH, V23, P223
[20]   Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrodinger equation in the radial case [J].
Kenig, Carlos E. ;
Merle, Frank .
INVENTIONES MATHEMATICAE, 2006, 166 (03) :645-675