Scattering below the ground state for the intercritical non-radial inhomogeneous NLS

被引:10
作者
Cardoso, Mykael [1 ]
Farah, Luiz Gustavo [2 ]
Guzman, Carlos M. [3 ]
Murphy, Jason [4 ]
机构
[1] Univ Fed Piaui, Dept Math, Teresina, Brazil
[2] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, Brazil
[3] Univ Fed Fluminense, Dept Math, Niteroi, Brazil
[4] Dept Math & Stat, Missouri S&T, Rolla, MO USA
关键词
Inhomogeneous NLS; Intercritical; Non-radial data; Scattering; GLOBAL WELL-POSEDNESS; BLOW-UP; SPACE;
D O I
10.1016/j.nonrwa.2022.103687
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing inhomogeneous nonlinear Schrodinger equation i & part;(t)u+ ?u+ |x|(-b)|u|(alpha)u= 0 on R x R-N, with N >= 2, 0 < b < min{N/2 , 2}, and 4-2b/N < alpha < 4-2b/N-2 . These constraints make the equation mass-supercritical and energy-subcritical. We extend the results of Farah and Guzman (2020) and Miao et al. (2019) and prove scattering below the ground state with general initial data. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 32 条
[1]   Blowup and scattering problems for the nonlinear Schrodinger equations [J].
Akahori, Takafumi ;
Nawa, Hayato .
KYOTO JOURNAL OF MATHEMATICS, 2013, 53 (03) :629-672
[2]  
[Anonymous], 2003, Courant Lecture Notes
[3]   SCATTERING OF RADIAL DATA IN THE FOCUSING NLS AND GENERALIZED HARTREE EQUATIONS [J].
Arora, Anudeep Kumar .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (11) :6643-6668
[4]  
Campos L, 2020, Arxiv, DOI arXiv:1905.02663
[5]  
Cardoso M, 2020, Arxiv, DOI arXiv:2004.06706
[6]  
Dinh V. D., 2017, arXiv
[7]   A new proof of scattering below the ground state for the non-radial focusing NLS [J].
Dodson, Benjamin ;
Murphy, Jason .
MATHEMATICAL RESEARCH LETTERS, 2018, 25 (06) :1805-1825
[8]  
Dinh VD, 2019, Arxiv, DOI arXiv:1908.02987
[9]  
Duyckaerts T, 2008, MATH RES LETT, V15, P1233
[10]   Scattering for the focusing energy-subcritical nonlinear Schrodinger equation [J].
Fang DaoYuan ;
Xie Jian ;
Cazenave Thierry .
SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) :2037-2062