Super high-rate, long cycle life of europium-modified, carbon-coated, hierarchical mesoporous lithium-titanate anode materials for lithium ion batteries

被引:93
作者
Cai, Yanjun [1 ]
Huang, Yudai [1 ]
Jia, Wei [1 ]
Wang, Xingchao [1 ]
Guo, Yong [1 ]
Jia, Dianzeng [1 ]
Sun, Zhipeng [1 ]
Pang, Weikong [2 ,3 ]
Guo, Zaiping [2 ]
机构
[1] Xinjiang Univ, Key Lab Energy Mat Chem, Key Lab Adv Funct Mat, Minist Educ,Inst Appl Chem, Urumqi 830046, Xinjiang, Peoples R China
[2] Univ Wollongong, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[3] Australian Nucl Sci & Technol Org, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia
基金
中国国家自然科学基金;
关键词
HIGH-RATE CAPABILITY; HIGH-RATE PERFORMANCE; DOPED LI4TI5O12; ELECTROCHEMICAL PERFORMANCE; ELECTRODE MATERIALS; FACILE SYNTHESIS; NANOPARTICLES; STORAGE; SPINEL; NANOSHEETS;
D O I
10.1039/c6ta03162e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Europium-modified, carbon-coated, hierarchical mesoporous Li4Ti5O12 microspheres were prepared via the co-precipitation method. X-ray diffraction (XRD) and Raman analyses revealed that europium ions were doped into 16d Li+/Ti4+ sites of Li4Ti5O12. Microscopic observations reveal that primary nanoparticles of Li(4-x/2)Ti(5-x/2)EuxO(12)@C (x = 0.004) are assembled into hierarchical mesoporous microspheres, with an average particle size of about 473.4 nm and a uniform particle size distribution. X-ray photoelectron spectroscopy demonstrated that partial Ti4+ is reduced to Ti3+ induced by carbon coating and double-valence state of europium (Eu2+/Eu3+) doping into the Li4Ti5O12. The samples exhibit excellent electrochemical properties including fast lithium storage performance, outstanding cycle stability and high rate capability. The highest initial discharge capacity of Li(4-x/2)Ti(5-x/2)EuxO(12)@C (x = 0.004) reached 198.7 mA h g(-1) and the discharge capacity still maintained 173.4 mA h g(-1) at 5C after 1000 cycles. Even cycled at 100C, the discharge capacity of Li(4-x/2)Ti(5-x/2)EuxO(12)@C (x = 0.004) maintained 92.1 mA h g(-1). The excellent electrochemical performance can be attributed to the hierarchical mesoporous structure combined with modified strategies including europium doping and carbon coating, which not only improved the lithium-ion diffusion coefficient, but also increased the electronic conductivity. Moreover, the electrical conductivity between the Li4Ti5O12 particles was enhanced by carbon coating and the bulk electronic conductivity of Li4Ti5O12 was also improved by the presence of Ti3+.
引用
收藏
页码:9949 / 9957
页数:9
相关论文
共 59 条
[1]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Yttrium-modified Li4Ti5O12 as an effective anode material for lithium ion batteries with outstanding long-term cyclability and rate capabilities [J].
Bai, Yu-Jun ;
Gong, Chen ;
Lun, Ning ;
Qi, Yong-Xin .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (01) :89-96
[4]   Excellent long-term cycling stability of La-doped Li4Ti5O12 anode material at high current rates [J].
Bai, Yu-Jun ;
Gong, Chen ;
Qi, Yong-Xin ;
Lun, Ning ;
Feng, Jun .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (36) :19054-19060
[5]   A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature [J].
Cai, Rui ;
Jiang, Simin ;
Yu, Xing ;
Zhao, Bote ;
Wang, Huanting ;
Shao, Zongping .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) :8013-8021
[6]   Studies of Mg-substituted Li4-xMgxTi5O12 spinel electrodes (0 ≤ x ≤ 1) for lithium batteries [J].
Chen, CH ;
Vaughey, JT ;
Jansen, AN ;
Dees, DW ;
Kahaian, AJ ;
Goacher, T ;
Thackeray, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) :A102-A104
[7]   Small amount of reduce graphene oxide modified Li4Ti5O12 nanoparticles for ultrafast high-power lithium ion battery [J].
Chen, Chengcheng ;
Huang, Yanan ;
Zhang, Hao ;
Wang, Xiaofeng ;
Li, Guoyang ;
Wang, Yijing ;
Jiao, Lifang ;
Yuan, Huatang .
JOURNAL OF POWER SOURCES, 2015, 278 :693-702
[8]   Copper-Doped Dual Phase Li4Ti5O12-TiO2 Nanosheets as High-Rate and Long Cycle Life Anodes for High-Power Lithium-Ion Batteries [J].
Chen, Chengcheng ;
Huang, Yanan ;
An, Cuihua ;
Zhang, Hao ;
Wang, Yijing ;
Jiao, Lifang ;
Yuan, Huatang .
CHEMSUSCHEM, 2015, 8 (01) :114-122
[9]   Polyethylene glycol-assisted synthesis of hierarchically porous layered lithium-rich oxide as cathode of lithium ion battery [J].
Chen, Min ;
Xiang, Xingde ;
Chen, Dongrui ;
Liao, Youhao ;
Huang, Qiming ;
Li, Weishan .
JOURNAL OF POWER SOURCES, 2015, 279 :197-204
[10]   Defective mesoporous Li4Ti5O12-y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C [J].
Chen, Xiaomei ;
Guan, Xiangfeng ;
Li, Liping ;
Li, Guangshe .
JOURNAL OF POWER SOURCES, 2012, 210 :297-302