Relativistic effective interaction for nuclei, giant resonances, and neutron stars

被引:296
作者
Fattoyev, F. J. [1 ]
Horowitz, C. J. [2 ,3 ]
Piekarewicz, J. [1 ]
Shen, G. [2 ,3 ]
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[2] Indiana Univ, Ctr Nucl Theory, Bloomington, IN 47405 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
来源
PHYSICAL REVIEW C | 2010年 / 82卷 / 05期
关键词
EQUATION-OF-STATE; GROUND-STATE; RADII; DENSITY; MATTER;
D O I
10.1103/PhysRevC.82.055803
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Nuclear effective interactions are useful tools in astrophysical applications especially if one can guide the extrapolations to the extremes regions of isospin and density that are required to simulate dense, neutron-rich systems. Isospin extrapolations may be constrained in the laboratory by measuring the neutron skin thickness of a heavy nucleus, such as Pb-208. Similarly, future observations of massive neutron stars will constrain the extrapolations to the high-density domain. In this contribution we introduce a new relativistic effective interaction that is simultaneously constrained by the properties of finite nuclei, their collective excitations, and neutron-star properties. By adjusting two of the empirical parameters of the theory, one can efficiently tune the neutron skin thickness of Pb-208 and the maximum neutron-star mass. We illustrate this procedure in response to the recent interpretation of x-ray observations by Steiner, Lattimer, and Brown that suggests that the FSUGold effective interaction predicts neutron-star radii that are too large and a maximum stellar mass that is too small. The new effective interaction is fitted to a neutron skin thickness in Pb-208 of only R-n - R-p = 0.16 fm and yields a moderately large maximum neutron-star mass of 1.94 M-circle dot.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Constraints on the symmetry energy and its associated parameters from nuclei to neutron stars [J].
Zhang, Yingxun ;
Liu, Min ;
Xia, Cheng-Jun ;
Li, Zhuxia ;
Biswal, S. K. .
PHYSICAL REVIEW C, 2020, 101 (03)
[42]   Symmetry energy constraints from giant resonances: A relativistic mean-field theory overview [J].
Piekarewicz, J. .
EUROPEAN PHYSICAL JOURNAL A, 2014, 50 (02) :1-18
[43]   Nuclear Matter and Neutron Stars from Relativistic Brueckner-Hartree-Fock Theory [J].
Tong, Hui ;
Wang, Chencan ;
Wang, Sibo .
ASTROPHYSICAL JOURNAL, 2022, 930 (02)
[44]   Complete equation of state for neutron stars using the relativistic Hartree-Fock approximation [J].
Miyatsu, Tsuyoshi ;
Yamamuro, Sachiko ;
Nakazato, Ken'ichiro ;
Cheoun, Myung-Ki .
ORIGIN OF MATTER AND EVOLUTION OF GALAXIES 2013, 2014, 1594 :420-425
[45]   Properties of Neutron Stars Described by a Relativistic Ab Initio Model [J].
Wang, Chencan ;
Hu, Jinniu ;
Zhang, Ying ;
Shen, Hong .
ASTROPHYSICAL JOURNAL, 2020, 897 (01)
[46]   Effective interactions of hyperons and mass-radius relation of neutron stars [J].
Lim, Yeunhwan ;
Lee, Chang-Hwan ;
Oh, Yongseok .
PHYSICAL REVIEW D, 2018, 97 (02)
[47]   Relativistic Mean Field Calculations in Neutron-rich Nuclei [J].
Gangopadhyay, G. ;
Bhattacharya, Madhubrata ;
Roy, Subinit .
FRONTIERS IN GAMMA-RAY SPECTROSCOPY 2012 - FIG12, 2014, 1609 :63-70
[48]   Peeling away neutron skin in ultracentral collisions of relativistic nuclei [J].
Kozyrev, Nikita ;
Svetlichnyi, Aleksandr ;
Nepeivoda, Roman ;
Pshenichnov, Igor .
EUROPEAN PHYSICAL JOURNAL A, 2022, 58 (09)
[49]   Giant quadrupole resonances in 208Pb, the nuclear symmetry energy, and the neutron skin thickness [J].
Roca-Maza, X. ;
Brenna, M. ;
Agrawal, B. K. ;
Bortignon, P. F. ;
Colo, G. ;
Cao, Li-Gang ;
Paar, N. ;
Vretenar, D. .
PHYSICAL REVIEW C, 2013, 87 (03)
[50]   The influence of the symmetry energy on the giant monopole resonance of neutron-rich nuclei analyzed in Thomas-Fermi theory [J].
Centelles, M. ;
Patra, S. K. ;
Roca-Maza, X. ;
Sharma, B. K. ;
Stevenson, P. D. ;
Vinas, X. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2010, 37 (07)