Design and Analysis of a 32-bit Embedded High-Performance Cluster Optimized for Energy and Performance

被引:24
作者
Cloutier, Michael F. [1 ]
Paradis, Chad [1 ]
Weaver, Vincent M. [1 ]
机构
[1] Univ Maine, Elect & Comp Engn, Orono, ME 04469 USA
来源
2014 HARDWARE-SOFTWARE CO-DESIGN FOR HIGH PERFORMANCE COMPUTING (CO-HPC) | 2014年
关键词
ARM; X86;
D O I
10.1109/Co-HPC.2014.7
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A growing number of supercomputers are being built using processors with low-power embedded ancestry, rather than traditional high-performance cores. In order to evaluate this approach we investigate the energy and performance tradeoffs found with ten different 32-bit ARM development boards while running the HPL Linpack and STREAM benchmarks. Based on these results (and other practical concerns) we chose the Raspberry Pi as a basis for a power-aware embedded cluster computing testbed. Each node of the cluster is instrumented with power measurement circuitry so that detailed cluster-wide power measurements can be obtained, enabling power / performance co-design experiments. While our cluster lags recent x86 machines in performance, the power, visualization, and thermal features make it an excellent low-cost platform for education and experimentation.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 34 条
[1]   Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment [J].
Abrahamsson, Pekka ;
Helmer, Sven ;
Phaphoom, Nattakarn ;
Nicolodi, Lorenzo ;
Preda, Nick ;
Miori, Lorenzo ;
Angriman, Matteo ;
Rikkilae, Juha ;
Wang, Xiaofeng ;
Hamily, Karim ;
Bugoloni, Sara .
2013 IEEE FIFTH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM), VOL 2, 2013, :170-175
[2]  
Almasi G, 2008, IBM J RES DEV, V52, P199
[3]  
[Anonymous], 1999, P 9 SIAM C PAR PROC
[4]  
[Anonymous], P 11 WORKSH PAR DIST
[5]   Towards green data centers: A comparison of x86 and ARM architectures power efficiency [J].
Aroca, Rafael Vidal ;
Garcia Goncalves, Luiz Marcos .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2012, 72 (12) :1770-1780
[6]  
Balakrishnan N., 2012, THESIS
[7]  
Bedard D., 2009, TR0904 REN COMP I
[8]  
Blem E, 2013, INT S HIGH PERF COMP, P1, DOI 10.1109/HPCA.2013.6522302
[9]   Iridis-pi: a low-cost, compact demonstration cluster [J].
Cox, Simon J. ;
Cox, James T. ;
Boardman, Richard P. ;
Johnston, Steven J. ;
Scott, Mark ;
O'Brien, Neil S. .
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2014, 17 (02) :349-358
[10]  
Dongarra J., 2012, P 2012 IEEE HIGH PER