On the concept of stationary Lyapunov basis

被引:63
作者
Ershov, SV [1 ]
Potapov, AB [1 ]
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
来源
PHYSICA D | 1998年 / 118卷 / 3-4期
基金
俄罗斯基础研究基金会;
关键词
dynamical systems; Lyapunov exponents;
D O I
10.1016/S0167-2789(98)00013-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose the concept of stationary Lyapunov basis - the basis of tangent vectors e((i))(x) defined at every point x of the attractor of the dynamical system, and show that one can reformulate some algorithms for calculation of Lyapunov exponents lambda(i) so that each lambda(i) can be treated as the average of a function S-i (x). This enables one to use measure averaging in theoretical arguments thus proposing the rigorous basis for a number of ideas for calculation of Lyapunov exponents from time series. We also study how the Lyapunov vectors in Benettin's algorithm converge to the stationary basis and show that this convergence rate determines continuity of the field of stationary Lyapunov vectors. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:167 / 198
页数:32
相关论文
共 13 条
[1]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[2]  
Crisanti A., 1993, SPRINGER SERIES SOLI, DOI DOI 10.1007/978-3-642-84942-8
[3]   LIAPUNOV EXPONENTS FROM TIME-SERIES [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D ;
CILIBERTO, S .
PHYSICAL REVIEW A, 1986, 34 (06) :4971-4979
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   LYAPUNOV EXPONENTS AS MEASURE AVERAGES [J].
ERSHOV, SV .
PHYSICS LETTERS A, 1993, 176 (1-2) :89-95
[6]  
GANTMAHER R, 1953, THEORY MATRICES
[7]   COMPARISON OF DIFFERENT METHODS FOR COMPUTING LYAPUNOV EXPONENTS [J].
GEIST, K ;
PARLITZ, U ;
LAUTERBORN, W .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (05) :875-893
[8]   STABILITY AND LYAPUNOV STABILITY OF DYNAMIC-SYSTEMS - A DIFFERENTIAL APPROACH AND A NUMERICAL-METHOD [J].
GOLDHIRSCH, I ;
SULEM, PL ;
ORSZAG, SA .
PHYSICA D, 1987, 27 (03) :311-337
[9]   ERGODIC PROPERTIES OF LINEAR DYNAMIC-SYSTEMS [J].
JOHNSON, RA ;
PALMER, KJ ;
SELL, GR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (01) :1-33
[10]   A ROBUST METHOD TO ESTIMATE THE MAXIMAL LYAPUNOV EXPONENT OF A TIME-SERIES [J].
KANTZ, H .
PHYSICS LETTERS A, 1994, 185 (01) :77-87