A Bayesian approach to the g-formula

被引:30
作者
Keil, Alexander P. [1 ]
Daza, Eric J. [2 ]
Engel, Stephanie M. [1 ]
Buckley, Jessie P. [1 ]
Edwards, Jessie K. [1 ]
机构
[1] Univ N Carolina, Dept Epidemiol, Chapel Hill, NC 27514 USA
[2] Stanford Univ, Sch Med, Stanford Prevent Res Ctr, Palo Alto, CA 94304 USA
基金
美国国家卫生研究院;
关键词
Bayesian; causal inference; g-computation; semiparametric; PARAMETRIC G-FORMULA; CAUSAL INFERENCE; TOBACCO-SMOKE; EXPOSURE; DEFINITION; SURVIVAL; DISEASE; BIAS;
D O I
10.1177/0962280217694665
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Epidemiologists often wish to estimate quantities that are easy to communicate and correspond to the results of realistic public health interventions. Methods from causal inference can answer these questions. We adopt the language of potential outcomes under Rubin's original Bayesian framework and show that the parametric g-formula is easily amenable to a Bayesian approach. We show that the frequentist properties of the Bayesian g-formula suggest it improves the accuracy of estimates of causal effects in small samples or when data are sparse. We demonstrate an approach to estimate the effect of environmental tobacco smoke on body mass index among children aged 4-9 years who were enrolled in a longitudinal birth cohort in New York, USA. We provide an algorithm and supply SAS and Stan code that can be adopted to implement this computational approach more generally.
引用
收藏
页码:3183 / 3204
页数:22
相关论文
共 49 条
[1]   Estimating the Effects of Potential Public Health Interventions on Population Disease Burden: A Step-by-Step Illustration of Causal Inference Methods [J].
Ahern, Jennifer ;
Hubbard, Alan ;
Galea, Sandro .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2009, 169 (09) :1140-1147
[2]   Causal reasoning from longitudinal data [J].
Arjas, E ;
Parner, J .
SCANDINAVIAN JOURNAL OF STATISTICS, 2004, 31 (02) :171-187
[3]   Optimal Dynamic Regimes: Presenting a Case for Predictive Inference [J].
Arjas, Elja ;
Saarela, Olli .
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02)
[4]  
Berzuini Carlo, 2012, CAUSALITY STAT PERSP
[5]  
Buckley J.P., 2015, ENV HLTH PERSPECT, V124, P507
[6]   Evolving Methods for Inference in the Presence of Healthy Worker Survivor Bias [J].
Buckley, Jessie P. ;
Keil, Alexander P. ;
McGrath, Leah J. ;
Edwards, Jessie K. .
EPIDEMIOLOGY, 2015, 26 (02) :204-212
[7]   Analysis of treatment response data without the joint distribution of potential outcomes [J].
Chib, Siddhartha .
JOURNAL OF ECONOMETRICS, 2007, 140 (02) :401-412
[8]  
Cole SR, 2015, AM J EPIDEMIOL, V181, P246, DOI 10.1093/aje/kwv001
[9]   The Consistency Statement in Causal Inference A Definition or an Assumption? [J].
Cole, Stephen R. ;
Frangakis, Constantine E. .
EPIDEMIOLOGY, 2009, 20 (01) :3-5
[10]   Predicting Quantitative Traits With Regression Models for Dense Molecular Markers and Pedigree [J].
de los Campos, Gustavo ;
Naya, Hugo ;
Gianola, Daniel ;
Crossa, Jose ;
Legarra, Andres ;
Manfredi, Eduardo ;
Weigel, Kent ;
Cotes, Jose Miguel .
GENETICS, 2009, 182 (01) :375-385