Fast and adaptive sparse precision matrix estimation in high dimensions

被引:50
作者
Liu, Weidong [1 ,2 ]
Luo, Xi [3 ,4 ,5 ,6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200030, Peoples R China
[3] Brown Univ, Dept Biostat, Providence, RI 02912 USA
[4] Brown Univ, Ctr Stat Sci, Providence, RI 02912 USA
[5] Brown Univ, Brown Inst Brain Sci, Providence, RI 02912 USA
[6] Brown Univ, Providence, RI 02912 USA
基金
美国国家卫生研究院; 中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Adaptivity; Coordinate descent; Cross validation; Gaussian graphical models; Lasso; Convergence rates; COVARIANCE ESTIMATION; VARIABLE SELECTION; REGULARIZATION; CONVERGENCE; RATES;
D O I
10.1016/j.jmva.2014.11.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a new method for estimating sparse precision matrices in the high dimensional setting. It has been popular to study fast computation and adaptive procedures for this problem. We propose a novel approach, called Sparse Column-wise Inverse Operator, to address these two issues. We analyze an adaptive procedure based on cross validation, and establish its convergence rate under the Frobenius norm. The convergence of fast computation for large-scale problems, via a coordinate descent algorithm. Numerical merits are illustrated using both simulated and real datasets. In particular, it performs favorably on an HIV brain tissue dataset and an ADHD resting-state fMRI dataset. Coordinate descent (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 25 条
[1]   COVARIANCE REGULARIZATION BY THRESHOLDING [J].
Bickel, Peter J. ;
Levina, Elizaveta .
ANNALS OF STATISTICS, 2008, 36 (06) :2577-2604
[2]   Significant Effects of Antiretroviral Therapy on Global Gene Expression in Brain Tissues of Patients with HIV-1-Associated Neurocognitive Disorders [J].
Borjabad, Alejandra ;
Morgello, Susan ;
Chao, Wei ;
Kim, Seon-Young ;
Brooks, Andrew I. ;
Murray, Jacinta ;
Potash, Mary Jane ;
Volsky, David J. .
PLOS PATHOGENS, 2011, 7 (09)
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Cai T.T., 2015, ANN STAT IN PRESS
[5]   OPTIMAL RATES OF CONVERGENCE FOR COVARIANCE MATRIX ESTIMATION [J].
Cai, T. Tony ;
Zhang, Cun-Hui ;
Zhou, Harrison H. .
ANNALS OF STATISTICS, 2010, 38 (04) :2118-2144
[6]   A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong ;
Luo, Xi .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :594-607
[7]   Adaptive Thresholding for Sparse Covariance Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :672-684
[8]   First-order methods for sparse covariance selection [J].
D'Aspremont, Alexandre ;
Banerjee, Onureena ;
El Ghaoui, Laurent .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :56-66
[9]   Fronto-Temporal Spontaneous Resting State Functional Connectivity in Pediatric Bipolar Disorder [J].
Dickstein, Daniel P. ;
Gorrostieta, Cristina ;
Ombao, Hernando ;
Goldberg, Lisa D. ;
Brazel, Alison C. ;
Gable, Christopher J. ;
Kelly, Clare ;
Gee, Dylan G. ;
Zuo, Xi-Nian ;
Castellanos, F. Xavier ;
Milham, Michael P. .
BIOLOGICAL PSYCHIATRY, 2010, 68 (09) :839-846
[10]   NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES [J].
Fan, Jianqing ;
Feng, Yang ;
Wu, Yichao .
ANNALS OF APPLIED STATISTICS, 2009, 3 (02) :521-541