Central limit theorem and moderate deviation principle for CKLS model with small random perturbation

被引:5
作者
Cai, Yujie [1 ,2 ]
Wang, Shaochen [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Henan Univ Urban Construct, Sch Math & Phys, Pingdingshan, Peoples R China
基金
中国国家自然科学基金;
关键词
CKLS model; Small perturbation; Central limit theorem; Moderate deviation principle;
D O I
10.1016/j.spl.2014.11.017
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we study the asymptotic behavior of randomly perturbed Chan-Karolyi-Longstaff-Sanders (CKLS) model with small parameter root epsilon. When epsilon -> 0, the central limit theorem and moderate deviation principle for the solution of randomly perturbed CKLS model are obtained. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 1980, LECT NOTES MATH
[2]   General Freidlin-Wentzell Large Deviations and positive diffusions [J].
Baldi, P. ;
Caramellino, L. .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (08) :1218-1229
[3]   AN EMPIRICAL-COMPARISON OF ALTERNATIVE MODELS OF THE SHORT-TERM INTEREST-RATE [J].
CHAN, KC ;
KAROLYI, GA ;
LONGSTAFF, FA ;
SANDERS, AB .
JOURNAL OF FINANCE, 1992, 47 (03) :1209-1227
[4]  
Dembo A., 2009, Large deviations techniques and applications, V38
[5]   Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes [J].
Donati-Martin, C ;
Rouault, A ;
Yor, M ;
Zani, M .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 129 (02) :261-289
[6]  
Ma Y., 2011, MODERATE DEVIATION P
[7]  
REVUZ D., 2005, CONTINUOUS MARTINGAL